"MR=TR^\/"
"TR=\\displaystyle\\sum_{i=1}^np_iq_i"
"TR=100q-q^2+160q-2q^2"
"TR=260q-3q^2"
"MR=260-6q"
"MR=MC"
"260-6q=\\frac{2}{3}q"
"q=39"
a) If the market is a monopoly, then "mc=p_i"
For A:
"\\frac{2}{3}q=100-2q"
"\\frac {8}{3}q=100"
"q=36.5"
"p=63.5" For B:
"\\frac{2}{3}q=160-4q"
"\\frac {14}{3}q=160"
"q=34.2"
"p=91.6" b)
"E_A=\\frac{\\varDelta Q_A}{\\varDelta p_A}\\times \\frac{p}{q}=-0.575"
"E_B=\\frac{\\varDelta Q_B}{\\varDelta p_B}\\times \\frac{p}{q}=-\\frac{1}{2} \\times \\frac{2}{3}=-0.325" The sum of the modules of the elasticity coefficients of each product individually is 1
Comments
Leave a comment