Marginal Costs (MC) = "\\frac {2}{3}q"
Market 1 Inverse demand fxn: P=100 – qA
Total Revenue (TR) = P*Q
TR = "(100 \u2013 Q) \\times Q"
TR = "100Q \u2013 Q^2"
MR = "\\varDelta TR \/ \\varDelta Q = (100Q \u2013 Q^2)\/ \\varDelta Q"
MR = 100 – 2Q
Market 2 Inverse demand fxn: p=160−2qB
Total Revenue (TR) = "P\\times Q"
TR = "(160 \u2013 2Q) \\times Q"
TR = "160Q \u2013 2Q^2"
MR = "\\varDelta TR \/ \\varDelta Q = (160Q \u2013 2Q^2)\/ \\varDelta Q"
MR = 160 – 4Q
Equilibrium
MR = MC
Market 1: "100 \u2013 2Q = \\frac{2}{3}Q"
"\\frac{8}{3}Q = 100"
Q = "100\\times \\frac{3}{8}"
"Q_{1} = 37.5"
P = 100 – Q
P = 100 – 21.43
P = 78.57
TR = "100Q \u2013 Q^2"
TR = "100(37.5) \u2013 37.5^2"
TR = "160(37.5) \u2013 2(37.5^2)"
TR = 2,343.75
Market 2: 160 – 4Q = 2/3Q
14/3Q = 100
Q = "100\\times \\frac{3}{14}"
"Q_{2} = 21.43"
P = 160 – 2Q
P = "160 \u2013 2\\times21.43"
P = 160 – 42.86
P = 117.14
TR = "160Q \u2013 2Q^2"
TR = "160(21.43) \u2013 2(21.43^2)"
TR = 3,428.8 – 918.4898
TR = 2,510.31
Comments
Leave a comment