Market demand:
Q = 4,000 – 10P
Cournot equilibrium
Determine:
Profit = TR – TC
Market demand:
Q = Q1+Q2
Q1+Q2=4,000−10P
Inverse demand function: 10P=4,000−(Q1+Q2)
10P = 4,000 – Q1−Q2
P = 400 – 0.1Q1−0.1Q1
Firm 1
TR=P×Q
TR1=P×Q1=(400–0.1Q1–0.1Q2)×Q1
TR1 = P*Q1 = (400 – 0.1Q1 – 0.1Q2)*Q1
TR1=400–0.1Q12–0.1Q1×Q2
Profit
Profit (Π ) = TR1–TC1
Profit (Π ) = 400Q1–0.1Q12–0.1Q1Q2–TC1(0.1Q12+20Q1+100,000)
Profit (Π ) = 400Q1–0.1Q12–0.1Q1Q2–0.1Q12−20Q1−100,000
Profit (Π ) = 380Q1–0.2Q12–0.1Q1Q2−100,000
Getting the first derivative of the profit function and equating it to 0
ΔProfit(Π)/ΔQ1=380–0.4Q1–0.1Q2=0
ΔProfit(Π)/ΔQ1=0.4Q1+0.1Q2=380
Firm 2
TR=P×Q
TR2=P×Q2=(400–0.1Q1–0.1Q2)×Q2
TR2=400Q2–0.1Q1Q2–0.1Q22
Profit(Π)=TR2–TC2
Profit(Π)=400Q2–0.1Q1Q2–0.1Q22–TC2(0.4Q22+32Q2+20,000)
Profit(Π)=400Q2–0.1Q1Q2–0.1Q22–0.4Q22−32Q2−20,000
Profit(Π)=368Q2–0.1Q1Q2–0.5Q22−20,000
Getting the first derivative of the profit function and equating it to 0
ΔProfit(Π)/ΔQ2=368–0.1Q1–Q2=0
ΔProfit(Π)/ΔQ2=0.1Q1+Q2=368
Solving the simultaneous equation
Equilibrium output
ΔProfit(Π)/ΔQ1=0.4Q1+0.1Q2=380
ΔProfit(Π)/ΔQ2=0.1Q1+Q2=368
Q2=368−0.1Q1
0.4Q1+0.1×(368−0.1Q1)=380
0.4Q1+36.8−0.01Q1=380
0.39Q1=380−36.8
Q1=343.2/0.39
Q1=880
Equilibrium output of firm 1 = 880
Q2=368−0.1Q1
Q2=368−0.1×880
Q2=368−88
Q2=280
Equilibrium output of firm 2 = 280
Equilibrium price
P=400–0.1Q1–0.1Q2
P=400–0.1×880–0.1×280
P=400–88–28
P=284
Pure profit:
Firm 1
Profit(Π1)=380Q1–0.2Q12–0.1Q1Q2−100,000
Profit(Π1)=380×880–0.2×(8802)–0.1(880×280)−100,000
Profit(Π1)=334400–154880–24640−100,000
Profit(Π1)=54,880
Firm 2
Profit(Π2)=368×280–0.1×880×280–0.5×(2802)−20,000
Profit(Π2)=103040–24640–39200−20,000
Profit(Π2)=19,200
Comments