Market demand:
Q = 4,000 – 10P
Cournot equilibrium
Determine:
Profit = TR – TC
Market demand:
Q = "Q_{1} + Q_{2}"
"Q_{1} + Q_{2} = 4,000 - 10P"
Inverse demand function: "10P = 4,000 - (Q_{1} + Q_{2})"
10P = 4,000 – "Q_{1}-Q_{2}"
P = 400 – "0.1Q_{1}-0.1Q_{1}"
Firm 1
"TR = P \\times Q"
"TR_{1} = P \\times Q_{1} = (400 \u2013 0.1Q_{1} \u2013 0.1Q_{2}) \\times Q_{1}"
TR1 = P*Q1 = (400 – 0.1Q1 – 0.1Q2)*Q1
"TR_{1} = 400 \u2013 0.1Q_{1}^2 \u2013 0.1Q_{1}\\times Q_{2}"
Profit
Profit ("\\varPi" ) = "TR_{1} \u2013 TC_{1}"
Profit ("\\varPi" ) = "400Q_{1} \u2013 0.1Q_{1}^2 \u2013 0.1 Q_{1}Q_{2} \u2013 TC_{1} (0.1Q_{1}^2 + 20Q_{1} + 100,000)"
Profit ("\\varPi" ) = "400 Q_{1} \u2013 0.1Q_{1}^2 \u2013 0.1 Q_{1}Q_{2} \u2013 0.1Q_{1}^2 - 20Q_{1} - 100,000"
Profit ("\\varPi" ) = "380 Q_{1} \u2013 0.2Q_{1}^2 \u2013 0.1 Q_{1}Q_{2} - 100,000"
Getting the first derivative of the profit function and equating it to 0
"\\varDelta Profit (\\varPi)\/\\varDelta Q_{1} = 380 \u2013 0.4Q_{1} \u2013 0.1Q_{2} = 0"
"\\varDelta Profit (\\varPi)\/\\varDelta Q_{1} = 0.4Q_{1} + 0.1Q_{2} = 380"
Firm 2
"TR = P \\times Q"
"TR_{2} = P \\times Q_{2} = (400 \u2013 0.1Q_{1} \u2013 0.1Q_{2}) \\times Q_{2}"
"TR_{2} = 400 Q_{2} \u2013 0.1Q_{1} Q_{2}\u2013 0.1Q_{2}^2"
"Profit (\\varPi) = TR_{2} \u2013 TC_{2}"
"Profit (\\varPi) = 400 Q_{2} \u2013 0.1Q_{1} Q_{2}\u2013 0.1Q_{2}^2\u2013 TC_{2} (0.4Q_{2}^2 + 32Q_{2} +20,000)"
"Profit (\\varPi) = 400 Q_{2} \u2013 0.1Q_{1} Q_{2}\u2013 0.1Q_{2}^2\u2013 0.4Q_{2}^2 - 32Q_{2} -20,000"
"Profit (\\varPi) = 368Q_{2} \u2013 0.1Q_{1} Q_{2} \u2013 0.5Q_{2}^2 -20,000"
Getting the first derivative of the profit function and equating it to 0
"\\varDelta Profit (\\varPi)\/ \\varDelta Q_{2} = 368 \u2013 0.1Q_{1} \u2013 Q_{2} = 0"
"\\varDelta Profit (\\varPi)\/ \\varDelta Q_{2} = 0.1Q_{1} + Q_{2} = 368"
Solving the simultaneous equation
Equilibrium output
"\\varDelta Profit (\\varPi)\/ \\varDelta Q_{1} = 0.4Q_{1} + 0.1Q_{2} = 380"
"\\varDelta Profit (\\varPi)\/ \\varDelta Q_{2} = 0.1Q_{1} + Q_{2} = 368"
"Q_{2} = 368 - 0.1Q_{1}"
"0.4Q_{1} + 0.1\\times(368 - 0.1Q_{1}) = 380"
"0.4Q_{1} + 36.8 - 0.01Q_{1} = 380"
"0.39Q_{1} = 380 - 36.8"
"Q_{1} = 343.2\/0.39"
"Q_{1} = 880"
Equilibrium output of firm 1 = 880
"Q_{2} = 368 - 0.1Q_{1}"
"Q_{2} = 368 - 0.1\\times880"
"Q_{2} = 368 - 88"
"Q_{2} = 280"
Equilibrium output of firm 2 = 280
Equilibrium price
"P = 400 \u2013 0.1Q_{1} \u2013 0.1Q_{2}"
"P = 400 \u2013 0.1\\times880 \u2013 0.1\\times280"
"P = 400 \u2013 88 \u2013 28"
"P = 284"
Pure profit:
Firm 1
"Profit (\\varPi_{1}) = 380 Q_{1} \u2013 0.2Q_{1}^2 \u2013 0.1 Q_{1}Q_{2} - 100,000"
"Profit (\\varPi_{1}) = 380 \\times 880 \u2013 0.2 \\times (880^2) \u2013 0.1 (880 \\times 280) - 100,000"
"Profit (\\varPi_{1}) = 334400 \u2013 154880 \u2013 24640 - 100,000"
"Profit (\\varPi_{1}) = 54,880"
Firm 2
"Profit (\\varPi_{2}) = 368\\times280 \u2013 0.1 \\times 880 \\times 280 \u2013 0.5 \\times (280^2) -20,000"
"Profit (\\varPi_{2}) = 103040 \u2013 24640 \u2013 39200 -20,000"
"Profit (\\varPi_{2}) = 19,200"
Comments
Leave a comment