Question #117719
. The market for biscuit consist of two firms. Competition in the market is such that each. Of the tow firms independently produces a quantity of output taking the output of the other firm as given and these quantities are then sold in the market at a price determined by the total amount produced by the two firms. The short-run total cost functions of the firms are given by:

STC 1 = 0.1q 1 2 + 20q 1 + 100,000

STC 2 = 0.4q 2 2 + 32q 2 + 20,000

The two firms produce a homogenous product, the market demand is:

Q = 4,000 − 10P

If a Cournot equilibrium is achieved, calculate:

i. The equilibrium price.

ii. The equilibrium output of firm 1.

iii. The equilibrium output of firm 2.

iv. The pure profit of firm 1.

v. The pure profit of firm 2.
1
Expert's answer
2020-05-27T09:32:15-0400

Market demand:

Q = 4,000 – 10P

Cournot equilibrium

Determine:

Profit = TR – TC

Market demand:

Q = Q1+Q2Q_{1} + Q_{2}

Q1+Q2=4,00010PQ_{1} + Q_{2} = 4,000 - 10P

Inverse demand function: 10P=4,000(Q1+Q2)10P = 4,000 - (Q_{1} + Q_{2})

10P = 4,000 – Q1Q2Q_{1}-Q_{2}

P = 400 – 0.1Q10.1Q10.1Q_{1}-0.1Q_{1}

Firm 1

TR=P×QTR = P \times Q

TR1=P×Q1=(4000.1Q10.1Q2)×Q1TR_{1} = P \times Q_{1} = (400 – 0.1Q_{1} – 0.1Q_{2}) \times Q_{1}

TR1 = P*Q1 = (400 – 0.1Q1 – 0.1Q2)*Q1

TR1=4000.1Q120.1Q1×Q2TR_{1} = 400 – 0.1Q_{1}^2 – 0.1Q_{1}\times Q_{2}

Profit

Profit (Π\varPi ) = TR1TC1TR_{1} – TC_{1}

Profit (Π\varPi ) = 400Q10.1Q120.1Q1Q2TC1(0.1Q12+20Q1+100,000)400Q_{1} – 0.1Q_{1}^2 – 0.1 Q_{1}Q_{2} – TC_{1} (0.1Q_{1}^2 + 20Q_{1} + 100,000)

Profit (Π\varPi ) = 400Q10.1Q120.1Q1Q20.1Q1220Q1100,000400 Q_{1} – 0.1Q_{1}^2 – 0.1 Q_{1}Q_{2} – 0.1Q_{1}^2 - 20Q_{1} - 100,000

Profit (Π\varPi ) = 380Q10.2Q120.1Q1Q2100,000380 Q_{1} – 0.2Q_{1}^2 – 0.1 Q_{1}Q_{2} - 100,000

Getting the first derivative of the profit function and equating it to 0

ΔProfit(Π)/ΔQ1=3800.4Q10.1Q2=0\varDelta Profit (\varPi)/\varDelta Q_{1} = 380 – 0.4Q_{1} – 0.1Q_{2} = 0

ΔProfit(Π)/ΔQ1=0.4Q1+0.1Q2=380\varDelta Profit (\varPi)/\varDelta Q_{1} = 0.4Q_{1} + 0.1Q_{2} = 380

Firm 2

TR=P×QTR = P \times Q

TR2=P×Q2=(4000.1Q10.1Q2)×Q2TR_{2} = P \times Q_{2} = (400 – 0.1Q_{1} – 0.1Q_{2}) \times Q_{2}

TR2=400Q20.1Q1Q20.1Q22TR_{2} = 400 Q_{2} – 0.1Q_{1} Q_{2}– 0.1Q_{2}^2

Profit(Π)=TR2TC2Profit (\varPi) = TR_{2} – TC_{2}

Profit(Π)=400Q20.1Q1Q20.1Q22TC2(0.4Q22+32Q2+20,000)Profit (\varPi) = 400 Q_{2} – 0.1Q_{1} Q_{2}– 0.1Q_{2}^2– TC_{2} (0.4Q_{2}^2 + 32Q_{2} +20,000)

Profit(Π)=400Q20.1Q1Q20.1Q220.4Q2232Q220,000Profit (\varPi) = 400 Q_{2} – 0.1Q_{1} Q_{2}– 0.1Q_{2}^2– 0.4Q_{2}^2 - 32Q_{2} -20,000

Profit(Π)=368Q20.1Q1Q20.5Q2220,000Profit (\varPi) = 368Q_{2} – 0.1Q_{1} Q_{2} – 0.5Q_{2}^2 -20,000

Getting the first derivative of the profit function and equating it to 0

ΔProfit(Π)/ΔQ2=3680.1Q1Q2=0\varDelta Profit (\varPi)/ \varDelta Q_{2} = 368 – 0.1Q_{1} – Q_{2} = 0

ΔProfit(Π)/ΔQ2=0.1Q1+Q2=368\varDelta Profit (\varPi)/ \varDelta Q_{2} = 0.1Q_{1} + Q_{2} = 368

Solving the simultaneous equation

Equilibrium output

ΔProfit(Π)/ΔQ1=0.4Q1+0.1Q2=380\varDelta Profit (\varPi)/ \varDelta Q_{1} = 0.4Q_{1} + 0.1Q_{2} = 380

ΔProfit(Π)/ΔQ2=0.1Q1+Q2=368\varDelta Profit (\varPi)/ \varDelta Q_{2} = 0.1Q_{1} + Q_{2} = 368

Q2=3680.1Q1Q_{2} = 368 - 0.1Q_{1}

0.4Q1+0.1×(3680.1Q1)=3800.4Q_{1} + 0.1\times(368 - 0.1Q_{1}) = 380

0.4Q1+36.80.01Q1=3800.4Q_{1} + 36.8 - 0.01Q_{1} = 380

0.39Q1=38036.80.39Q_{1} = 380 - 36.8

Q1=343.2/0.39Q_{1} = 343.2/0.39

Q1=880Q_{1} = 880

Equilibrium output of firm 1 = 880

Q2=3680.1Q1Q_{2} = 368 - 0.1Q_{1}

Q2=3680.1×880Q_{2} = 368 - 0.1\times880

Q2=36888Q_{2} = 368 - 88

Q2=280Q_{2} = 280

Equilibrium output of firm 2 = 280

Equilibrium price

P=4000.1Q10.1Q2P = 400 – 0.1Q_{1} – 0.1Q_{2}

P=4000.1×8800.1×280P = 400 – 0.1\times880 – 0.1\times280

P=4008828P = 400 – 88 – 28

P=284P = 284

Pure profit:

Firm 1

Profit(Π1)=380Q10.2Q120.1Q1Q2100,000Profit (\varPi_{1}) = 380 Q_{1} – 0.2Q_{1}^2 – 0.1 Q_{1}Q_{2} - 100,000

Profit(Π1)=380×8800.2×(8802)0.1(880×280)100,000Profit (\varPi_{1}) = 380 \times 880 – 0.2 \times (880^2) – 0.1 (880 \times 280) - 100,000

Profit(Π1)=33440015488024640100,000Profit (\varPi_{1}) = 334400 – 154880 – 24640 - 100,000

Profit(Π1)=54,880Profit (\varPi_{1}) = 54,880

Firm 2

Profit(Π2)=368×2800.1×880×2800.5×(2802)20,000Profit (\varPi_{2}) = 368\times280 – 0.1 \times 880 \times 280 – 0.5 \times (280^2) -20,000

Profit(Π2)=103040246403920020,000Profit (\varPi_{2}) = 103040 – 24640 – 39200 -20,000

Profit(Π2)=19,200Profit (\varPi_{2}) = 19,200



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS