Question #116485
3. Given utility function U= X0.5Y0.5 where PX = 12 Birr, Birr, PY = 4 Birr and the income of the consumer is, M= 240 Birr.
a. Find the utility maximizing combinations of X and Y.

b. Calculate marginal rate of substitution of X for Y (MRSX,Y) at equilibrium and interpret your result.
1
Expert's answer
2020-05-19T09:53:11-0400

a)


MUx=y0.52x0.5MU_x=\frac{y^{0.5}}{2x^{0.5}}


MUy=x0.52y0.5MU_y=\frac{x^{0.5}}{2y^{0.5}}


12x+4y=24012x+4y=240


MUxpx=MUypy\frac{MU_x}{p_x}=\frac {MU_y}{p_y}


y0.524x0.5=x0.58y0.5\frac{y^{0.5}}{24x^{0.5}}=\frac{x^{0.5}}{8y^{0.5}}


y=3xy=3x


x=10,y=30x=10, y=30

b)


MRSx,y=MUxMUyMRS_{x,y}=\frac{MU_x}{MU_y}


MRSx,y=yx=3010=3MRS_{x,y}=\frac{y}{x}=\frac{30}{10}=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Esmael Mulat
26.02.24, 13:27

I like it.

Degefe zeleke
29.01.23, 11:27

Good

Nebet
13.07.22, 11:16

Thanks alot

LATEST TUTORIALS
APPROVED BY CLIENTS