Question #96658
1. A competitive firm faces a price of 136 and a total cost function of TC=7 + q2 + 6q +5
What is this firm's marginal cost function? MC(q)= 14*q+6

2. What quantity should this firm produce? Leave your answer in fraction form (if necessary).
1
Expert's answer
2019-10-22T09:49:31-0400
T.C=7q2+6q+5T.C=7q^2+6q+5


M.C=ddq(7q2+6q+5)=14q+6M.C=\frac{d}{dq}(7q^2+6q+5)=14q+6

Revenue function

price×quantity=136qprice\times quantity=136q


M.R=ddq(136q)=136M.R=\frac{d}{dq}(136q)=136

At optimal quantity,M.C=M.R

14q+6=13614q+6=136


14q=13014q=130


q=657q=\frac{65}{7}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
22.10.19, 16:49

Dear Funny Guy, thank you for your comment

Funny Guy
22.10.19, 13:21

*Solution* TC = 7q^2 + 6q + 5 MC = d/dq (7q^2 + 6q + 5) = 14q+6 Revenue function p*q = 136*q = 136q MR = d/dq (136q) = 136 At optimal quantity MC = MR 14q+6= 136 14q=136-6 14q=130 q=65/7

LATEST TUTORIALS
APPROVED BY CLIENTS