Given U=f(x,y)=Xa Yb and the budget constraint as M=PxXpyY
Solution
Set up constrained utility maximization problem:
"Max. U=xy+x+y"
s.t "P_{x}X+P_{y}y=M"
Set up a Lagrangian function:
"L\n=\nx\ny\n+\nx\n+\ny\n\u2212\n\u03bb\n(\nP_{\nx}\nX\n+\nP_{\ny}\nY\n\u2212\nM\n)"
Take the first derivative of L with respect to x and y:
"\\frac{\u2202\nL\n}{\u2202\nx}\n:\ny\n+\n1\n\u2212\n\u03bb\nP_{\nx}\n=\n0.....\n(\ni\n)\n."
"\\frac{\u2202\nL}{\n\u2202\ny}\n:\nx\n+\n1\n\u2212\n\u03bb\nP_{\ny}\n=\n0........\n(\ni\ni\n)\n."
"\\frac{\u2202\nL}{\n\u2202\n\u03bb}\n:\nP_{\nx}\nX\n+\nP_{\ny}\nY\n\u2212\nM\n=\n0..........\n(\ni\ni\ni\n)\n."
Solve equation (i) and (ii), and solve for x and y:
"\\frac{y+\n1}{\nP_{\nx}}\n=\n\u03bb\n,\n\\frac{x\n+\n1}{\nP_{\ny}}\n=\n\u03bb"
"\\frac{y\n+\n1}{\nP_{\nx}}\n=\n\\frac{x\n+\n1}{\nP_{\ny}}"
"P_{\ny}\n(\ny\n+\n1\n)\n=\nP_{\nx}\n(\nx\n+\n1\n)"
"P_{\ny}\nY\n+\nP_{\ny}\n=\nP_{\nx}\nX\n+\nP_{\nx}"
"P_{\ny}\nY\n=\nP_{\nx}\nX\n+\nP_{\nx}\n\u2212\nP_{\ny}"
"Y\n=\n\\frac{P_{\nx}\nX\n+\nP_{\nx}\n\u2212\nP_{\ny}}{\nP_{\ny}}"
"Y\n=\n\\frac{P_{\nx}\n(\nX\n+\n1\n)\n\u2212\nP_{\ny}}{\nP_{\ny}}"
"P_{\ny}\nY\n\u2212\nP_{\nx}\n+\nP_{\ny}\n=\nP_{\nx}\nX"
"X\n=\n\\frac{P_{\ny}\nY\n\u2212\nP_{\nx}\n+\nP_{\ny}}{\nP_{\nx}}"
Substitute both x and y in the budget constraint function:
"P_{\nx}\nX\n+\nP_{\ny}\n[\\frac{\nP_{\nx}\n(\nX\n+\n1\n)\n\u2212\nP_{\ny}}{\nP_{\ny}}\n]\n=\nM"
"P_{\nx}\nX\n+\nP_{\nx}\n(\nX\n+\n1\n)\n\u2212\nP_{\ny}\n=\nM"
"P\nx\nX\n+\nP\nx\nX\n+\nP\nx\n\u2212\nP\ny\n=\nM"
"2\nP\nX\n+\nP\nx\n\u2212\nP\ny\n=\nM"
"2\nP\nx\nX\n=\nM\n\u2212\nP\nx\n+\nP\ny"
"X^\n{M}\n=\\frac{\nM\n\u2212\nP\nx\n+\nP\ny}{\n2\nP\nx}"
The above "X^{M}" is the Marshallian demand for good x.
"P\nx\n[\\frac{\nP\ny\nY\n\u2212\nP\nx\n+\nP\ny}{\nP\nx\n}]\n+\nP_{\ny}\ny\n=\nM"
"P_{\ny}\nY\n\u2212\nP_{\nx}\n+\nP_{\ny}\n+\nP_{\ny}\ny\n=\nM"
"2\nP_{\ny}\ny\n=\nM\n+\nP_{\nx}\n\u2212\nP_{\ny}"
"Y^{\nM}\n=\nM\n+\nP_{\nx}\n\u2212\nP_{\ny}\n2\nP_{\ny}"
The "Y^{M}" is the Marshallian demand function for good Y.
Comments
Leave a comment