Solution
Set up constrained utility maximization problem:
Max.U=xy+x+y
s.t PxX+Pyy=M
Set up a Lagrangian function:
L=xy+x+y−λ(PxX+PyY−M)
Take the first derivative of L with respect to x and y:
∂x∂L:y+1−λPx=0.....(i).
∂y∂L:x+1−λPy=0........(ii).
∂λ∂L:PxX+PyY−M=0..........(iii).
Solve equation (i) and (ii), and solve for x and y:
Pxy+1=λ,Pyx+1=λ
Pxy+1=Pyx+1
Py(y+1)=Px(x+1)
PyY+Py=PxX+Px
PyY=PxX+Px−Py
Y=PyPxX+Px−Py
Y=PyPx(X+1)−Py
PyY−Px+Py=PxX
X=PxPyY−Px+Py
Substitute both x and y in the budget constraint function:
PxX+Py[PyPx(X+1)−Py]=M
PxX+Px(X+1)−Py=M
PxX+PxX+Px−Py=M
2PX+Px−Py=M
2PxX=M−Px+Py
XM=2PxM−Px+Py
The above XM is the Marshallian demand for good x.
Px[PxPyY−Px+Py]+Pyy=M
PyY−Px+Py+Pyy=M
2Pyy=M+Px−Py
YM=M+Px−Py2Py
The YM is the Marshallian demand function for good Y.
Comments