Question #316378

Given U=f(x,y)=Xa Yb and the budget constraint as M=PxXpyY

1
Expert's answer
2022-03-24T16:08:57-0400

Solution

Set up constrained utility maximization problem:

Max.U=xy+x+yMax. U=xy+x+y

s.t PxX+Pyy=MP_{x}X+P_{y}y=M


Set up a Lagrangian function:

L=xy+x+yλ(PxX+PyYM)L = x y + x + y − λ ( P_{ x} X + P_{ y} Y − M )


Take the first derivative of L with respect to x and y:

Lx:y+1λPx=0.....(i).\frac{∂ L }{∂ x} : y + 1 − λ P_{ x} = 0..... ( i ) .


Ly:x+1λPy=0........(ii).\frac{∂ L}{ ∂ y} : x + 1 − λ P_{ y} = 0........ ( i i ) .


Lλ:PxX+PyYM=0..........(iii).\frac{∂ L}{ ∂ λ} : P_{ x} X + P_{ y} Y − M = 0.......... ( i i i ) .


Solve equation (i) and (ii), and solve for x and y:


y+1Px=λ,x+1Py=λ\frac{y+ 1}{ P_{ x}} = λ , \frac{x + 1}{ P_{ y}} = λ


y+1Px=x+1Py\frac{y + 1}{ P_{ x}} = \frac{x + 1}{ P_{ y}}


Py(y+1)=Px(x+1)P_{ y} ( y + 1 ) = P_{ x} ( x + 1 )


PyY+Py=PxX+PxP_{ y} Y + P_{ y} = P_{ x} X + P_{ x}


PyY=PxX+PxPyP_{ y} Y = P_{ x} X + P_{ x} − P_{ y}


Y=PxX+PxPyPyY = \frac{P_{ x} X + P_{ x} − P_{ y}}{ P_{ y}}


Y=Px(X+1)PyPyY = \frac{P_{ x} ( X + 1 ) − P_{ y}}{ P_{ y}}


PyYPx+Py=PxXP_{ y} Y − P_{ x} + P_{ y} = P_{ x} X


X=PyYPx+PyPxX = \frac{P_{ y} Y − P_{ x} + P_{ y}}{ P_{ x}}


Substitute both x and y in the budget constraint function:

PxX+Py[Px(X+1)PyPy]=MP_{ x} X + P_{ y} [\frac{ P_{ x} ( X + 1 ) − P_{ y}}{ P_{ y}} ] = M


PxX+Px(X+1)Py=MP_{ x} X + P_{ x} ( X + 1 ) − P_{ y} = M


PxX+PxX+PxPy=MP x X + P x X + P x − P y = M


2PX+PxPy=M2 P X + P x − P y = M


2PxX=MPx+Py2 P x X = M − P x + P y


XM=MPx+Py2PxX^ {M} =\frac{ M − P x + P y}{ 2 P x}


The above XMX^{M}  is the Marshallian demand for good x.


Px[PyYPx+PyPx]+Pyy=MP x [\frac{ P y Y − P x + P y}{ P x }] + P_{ y} y = M


PyYPx+Py+Pyy=MP_{ y} Y − P_{ x} + P_{ y} + P_{ y} y = M


2Pyy=M+PxPy2 P_{ y} y = M + P_{ x} − P_{ y}


YM=M+PxPy2PyY^{ M} = M + P_{ x} − P_{ y} 2 P_{ y}


The YMY^{M}  is the Marshallian demand function for good Y.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS