a) Given a utility function
u = x_{1} ^ 0.5 * x_{2} ^ 0.25
If P_{1} = 2 and P_{2} = 4 and Y=100, compute optimal X_{1} and X_{2} that will maximize utility
"U= X_1^{0.5}X_2^{0.25}"
For utility maximization,
"\\frac{Mu_1}{Mu_2}= \\frac{P_1}{P_2}"
"Mu_1= 0.5X_1^{-0.5}X_2^{0.25}"
"Mu_2= 0.25X_1^{0.5}X_2^{-0.75}"
"\\frac{0.5 X_ 2}{0.25X_1}= \\frac{2}{4}"
"0.5X_1= 2X_2"
"X_1= 4X_2"
"X_2= 0.5X_1"
Budget line
"2X_1+4X_2= 100"
"2(4X_2)+ 4X_2= 100"
"X_2= 8.33"
"2X_1+ 4(0.5X_1)= 100"
"X_1= \\frac{100}{4}= 25"
Comments
Leave a comment