a) Given a utility function
u = x_{1} ^ 0.5 * x_{2} ^ 0.25
If P_{1} = 2 and P_{2} = 4 and Y=100, compute optimal X_{1} and X_{2} that will maximize utility
U=X10.5X20.25U= X_1^{0.5}X_2^{0.25}U=X10.5X20.25
For utility maximization,
Mu1Mu2=P1P2\frac{Mu_1}{Mu_2}= \frac{P_1}{P_2}Mu2Mu1=P2P1
Mu1=0.5X1−0.5X20.25Mu_1= 0.5X_1^{-0.5}X_2^{0.25}Mu1=0.5X1−0.5X20.25
Mu2=0.25X10.5X2−0.75Mu_2= 0.25X_1^{0.5}X_2^{-0.75}Mu2=0.25X10.5X2−0.75
0.5X20.25X1=24\frac{0.5 X_ 2}{0.25X_1}= \frac{2}{4}0.25X10.5X2=42
0.5X1=2X20.5X_1= 2X_20.5X1=2X2
X1=4X2X_1= 4X_2X1=4X2
X2=0.5X1X_2= 0.5X_1X2=0.5X1
Budget line
2X1+4X2=1002X_1+4X_2= 1002X1+4X2=100
2(4X2)+4X2=1002(4X_2)+ 4X_2= 1002(4X2)+4X2=100
X2=8.33X_2= 8.33X2=8.33
2X1+4(0.5X1)=1002X_1+ 4(0.5X_1)= 1002X1+4(0.5X1)=100
X1=1004=25X_1= \frac{100}{4}= 25X1=4100=25
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment