Answer to Question #297748 in Macroeconomics for Kim

Question #297748

a) Given a utility function





u = x_{1} ^ 0.5 * x_{2} ^ 0.25





If P_{1} = 2 and P_{2} = 4 and Y=100, compute optimal X_{1} and X_{2} that will maximize utility

1
Expert's answer
2022-02-14T13:41:26-0500

U=X10.5X20.25U= X_1^{0.5}X_2^{0.25}

For utility maximization,

Mu1Mu2=P1P2\frac{Mu_1}{Mu_2}= \frac{P_1}{P_2}

Mu1=0.5X10.5X20.25Mu_1= 0.5X_1^{-0.5}X_2^{0.25}

Mu2=0.25X10.5X20.75Mu_2= 0.25X_1^{0.5}X_2^{-0.75}

0.5X20.25X1=24\frac{0.5 X_ 2}{0.25X_1}= \frac{2}{4}


0.5X1=2X20.5X_1= 2X_2

X1=4X2X_1= 4X_2


X2=0.5X1X_2= 0.5X_1

Budget line

2X1+4X2=1002X_1+4X_2= 100


2(4X2)+4X2=1002(4X_2)+ 4X_2= 100

X2=8.33X_2= 8.33


2X1+4(0.5X1)=1002X_1+ 4(0.5X_1)= 100

X1=1004=25X_1= \frac{100}{4}= 25


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment