Question #293565

your given the following national income model Y=C+I+G ,C=12+0.8Y ,I=100+0.1Y ,G=300



present the model to matrix formula.

1
Expert's answer
2022-02-04T09:20:05-0500

To transform to a matrix, the following guideline has to be adhered.

Y=C+I+GY=C+I+G\toYC=I+GY-C=I+G

C=a+bYC=a+bY\to CbY=aC-bY=a

T=tYT=tY\to TtYT-tY

Y=C+I+GY=12+0.8Y+100+0.1Y+300Y=C+I+G\to Y=12+0.8Y+100+0.1Y+300

Y0.9Y=412Y=4120I=112+0.9(4120)Y-0.9Y=412\to Y=4120\therefore I=112+0.9(4120) =512=512

We then replace the values from the given equations where relevant, and placing a coefficient of zero to the missing constants in the guide equation.

1×Y1×C+0×T=I+G1\times Y-1\times C+0\times T=I+G

0.8×Y+1×C+0×T=12-0.8\times Y+1\times C + 0\times T=12

t×Y+0×C+1×T=0-t\times Y + 0\times C + 1\times T=0

The matrix obtained from the variable coefficients become;

A=A= [1100.810t01]\begin{bmatrix} 1 & -1 & 0 \\ -0.8 & 1 & 0 \\ -t & -0 & 1 \\ \end{bmatrix} X=X= [YCT]\begin{bmatrix} Y \\ C \\ T \\ \end{bmatrix} Z=Z= [I+G120]\begin{bmatrix} I+G \\ 12 \\ 0 \\ \end{bmatrix} but I and G values are known.

I+G=512+300=812I+G=512+300=812

so Z=[812120]Z=\begin{bmatrix} 812 \\ 12 \\ 0 \\ \end{bmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS