If the utility function involving commodities X and Y is U= 8x + 22y - x² - 2xy - y² and the budjet constraint is 12= x + 2y, determine the values of x and y that maximize the utility?
The values of x and y maximize the utility, if:
MUx/Px = MUy/Py or MUx/1 = MUy/2 and x + 2y = 12.
8 - 2x - 2y = 11 - x - y,
y = -x - 3,
x - 2x - 6 = 12,
x = -18,
y = 15.
Comments
Leave a comment