The Bok Chicken Factory is trying to figure out how to minimize the cost of producing 1200 units of chicken parts. The production function is q = 100L0.5 K0.5. The wage rate is birr 9 per hour and the rental rate on capital is birr 4 per machine hour.
Find the minimum cost of producing 1200 units.
Find the maximum output that can be produced for a total cost of birr 720.
w=9
r=4
q=1200
"q=100L^\\frac{1}{2}K^\\frac{1}{2}"
Derive MPL and MPK
MPL = "\\frac{\\partial Q} {\\partial L}" = 50L-0.5K0.5
MPK = "\\frac{\\partial Q} {\\partial K}" = 50L0.5K-0.5
"\\frac{MPL}{MPK}" = "\\frac{w}{r}"
w = 9
r = 4
50L-0.5K0.5 "\\div" 50L0.5K-0.5 = "\\frac{9}{4}"
"\\frac {50L^{-0.5}K^{0.5}}{50L^{0.5}K^{-0.5}}=\\frac{9}{4}"
"\\frac{K}{L}=\\frac{9}{4}"
K="\\frac{9}4L"
Substitute this value in the production function
"q=100(\\frac{9}{4}L)^{0.5}L^{0.5}"
"1200=100(\\frac{13}{4}L)^{0.5}"
"L^{0.5}=\\frac{1200}{(100)(3.25)^{0.5}}"
"L=(\\frac{1200}{(100)(3.25^{0.5}})^2"
"= \\frac{1440000}{32500}= 44.31"
"K= \\frac{9}{4}L"
"K= \\frac{9}{4}\\times 44.31= 99.69"
TC= wL+rK
720=9L+4K
But L="\\frac {9}{4}K"
"720= 9L+\\frac{9}{4}L"
"720=\\frac{45}{4}L"
"L=\\frac{(720\\times 4)}{45}= 64"
"K=\\frac{9}{4}\\times 64= 144"
Total Output=144+64= 208
Comments
Leave a comment