Question #264453

Suppose f(x,y)= 4x2 + 3y2.

a. Calculate the partial derivatives of f.

b. Suppose f(x,y)= 16. Use the implicit function theorem to calculate dy/dx.

c. What is the value of dy/dx if x=1, y=2? 


1
Expert's answer
2021-11-16T10:37:58-0500

f(x,y)=16f(x,y)=16

Axis interception points of 16:

Y- intercept:(0,16)

Slope of 16: m=0.

Range: 16




(a)

f(x,y)=4x2+3y2f(x,y)=4x^2+3y^2

δFδx\frac{\delta F}{\delta x} is a partial derivative of F w.r.t. x.

δδx(4x2+3y2)=8x+0=8x\frac{\delta}{\delta x}(4x^2+3y^2)=8x+0=8x

Similarly,

δδy(4x2+3y2)=0+6y=6y\frac{\delta}{\delta y}(4x^2+3y^2)=0+6y=6y

(b)

At x=1 and y=2:

F=4(1)2+3(2)2=16.F=4(1)^2+3(2)^2=16.

Total differential for F:

=δFδx.dx+δFδy.dy=\frac{\delta F}{\delta x}.dx+\frac{\delta F}{\delta y}.dy

δF=8xdx+6ydy\delta F=8xdx+6ydy

When δF=0\delta F=0

    =8xdx6ydy=0\implies =8xdx-6ydy=0

8xdx=6ydy8xdx=6ydy

dydx=8x6y=4x3y\frac{dy}{dx}=\frac{8x}{6y}=\frac{4x}{3y}

(c)

Value of dydx\frac{dy}{dx} when x=1 and y=2:

=4(1)3(2)=46=23=\frac{4(1)}{3(2)}=\frac{4}{6}=\frac{2}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS