Suppose f(x,y)= 4x2 + 3y2.
a. Calculate the partial derivatives of f.
b. Suppose f(x,y)= 16. Use the implicit function theorem to calculate dy/dx.
c. What is the value of dy/dx if x=1, y=2?
"f(x,y)=16"
Axis interception points of 16:
Y- intercept:(0,16)
Slope of 16: m=0.
Range: 16
(a)
"f(x,y)=4x^2+3y^2"
"\\frac{\\delta F}{\\delta x}" is a partial derivative of F w.r.t. x.
"\\frac{\\delta}{\\delta x}(4x^2+3y^2)=8x+0=8x"
Similarly,
"\\frac{\\delta}{\\delta y}(4x^2+3y^2)=0+6y=6y"
(b)
At x=1 and y=2:
"F=4(1)^2+3(2)^2=16."
Total differential for F:
"=\\frac{\\delta F}{\\delta x}.dx+\\frac{\\delta F}{\\delta y}.dy"
"\\delta F=8xdx+6ydy"
When "\\delta F=0"
"\\implies =8xdx-6ydy=0"
"8xdx=6ydy"
"\\frac{dy}{dx}=\\frac{8x}{6y}=\\frac{4x}{3y}"
(c)
Value of "\\frac{dy}{dx}" when x=1 and y=2:
"=\\frac{4(1)}{3(2)}=\\frac{4}{6}=\\frac{2}{3}"
Comments
Leave a comment