Question #253567
Suppose a perfect in competitive firmà ƒ ƒ ¢ € ™s short
run cost function is given by:
TC= 1/3 Q3 + 3 Q2 + 10Q +40
if the market price of the commodity Is Birr 26 per unit.
A. Determine the profit maximizing Level of output
b, find AFC AC, AVC and MC of firm
at optimum level a output.
c, find maximum profit of the firm.
1
Expert's answer
2021-10-20T10:03:31-0400

A

The firm should produce at MR=MC to maximize its profit.

TC=13Q3+3Q2+10Q+40TC=\frac{1}{3} Q^3+3Q^2+10Q+40

MC=Q2+6Q+10MC=Q^2+6Q+10


MR=MCTR=PQ=26QMR=2626=Q2+6Q+10Q2+6Q16=0Q2+8Q2Q16=0Q(Q+8)2(Q+8)=0(Q2)(Q+8)=0Q=2 or Q=8MR=MC\\TR=PQ=26Q\\MR=26\\26=Q^2+6Q+10\\Q^2+6Q-16=0\\Q^2+8Q-2Q-16=0\\Q(Q+8)-2(Q+8)=0\\(Q-2)(Q+8)=0\\Q=2 \space or\space Q=-8


The profit maximizing level is 2 units


b.

AFC=FCQAFC=\frac{FC}{Q}

=402=20=\frac{40}{2}=20


AC=TCQ=13(2)3+3(2)2+10(2)+402=37.3333333AC=\frac{TC}{Q}=\frac{\frac{1}{3}(2)^3+3(2)^2+10(2)+40}{2}=37.3333333


AVC=VCQ=13(2)3+3(2)2+10(2)2=17.333333AVC=\frac{VC}{Q}=\frac{\frac{1}{3}(2)^3+3(2)^2+10(2)}{2}=17.333333


MC=δTCδQ=Q2+6Q+10MC=\frac{\delta TC}{\delta Q}=Q^2+6Q+10


c.

profit=TRTCTR=P×Q=26×2=52TC=13(2)3+3(2)2+10(2)+40=74.66666profit=5274.66666=22.66666profit =TR-TC\\TR=P\times Q=26\times 2=52\\TC=\frac{1}{3} (2)^3+3(2)^2+10(2)+40=74.66666\\profit =52-74.66666=-22.66666


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS