Solution:
1.). U = X0.4Y0.6
Budget constraint = 2X + 3Y = 50
Utility Maximization: "\\frac{MU_{X} }{MU_{Y}} = \\frac{P_{X} }{P_{Y}}"
MUX = "\\frac{\\partial U} {\\partial X}" = 0.4X-0.6Y0.6
MUY = "\\frac{\\partial U} {\\partial Y}" = 0.6X0.4Y-0.4
"\\frac{MU_{X} }{P_{X}} = \\frac{MU_{Y} }{P_{Y}}"
"\\frac{0.4X^{-0.6}Y^{0.6} }{P_{X} } = \\frac{0.6X^{0.4}Y^{-0.4} }{P_{Y}}"
Simplify:
X = Y
Substitute in the budget constraint:
50 = 2Y + 3Y
50 = 2Y + 3Y
50 = 5Y
Y = 10
X = 10
2.). New budget constraint: 100 = 2X + 3Y
100 = 2Y + 3Y
100 = 5Y
Y = 20
The new quantity of X = 20
The new quantity of Y = 20
Comments
Leave a comment