Question #250424
commodities, X and Y. The income of Mr.Alemu is $200, and price of X is 5 and the price of Y is 15. The demand function for the comnmodity is given as:

Qx=100-0.75)y +0.251px1/3 + 2p3/2

where Qx is quantity demand of commodity X. 7Px is the price of commodity X, p, is
1
Expert's answer
2021-10-12T12:26:48-0400

Price elasticity of demand =dQxdP×PQ= \frac{dQ_x}{dP} \times \frac{P }{ Q}


Qx=1000.75y+0.251px13+2py32Q_x=100 - 0.75y +0.251 px^{\frac{1}{3}} + 2py^{\frac{3}{2}}


Qx=1000.75×200+0.251px13+2×1532Qx=100 - 0.75\times200 +0.251 px^{\frac{1}{3}} + 2 \times 15^{\frac{3}{2}}


Qx=100150+0.251px13+2×58.09475Qx=100 - 150 + 0.251 px^{\frac{1}{3}} + 2 \times 58.09475


Qx=50+0.251px13+116.1895Qx = - 50 + 0.251 px^{\frac{1}{3}} + 116.1895


Qx=50+0.251px13+116.1895Qx = - 50 + 0.251 px^{\frac{1}{3}} + 116.1895


Qx=66.1895+0.251px13Qx = 66.1895 + 0.251 px^{\frac{1}{3}}


Qx=66.1895+0.251×513Qx = 66.1895 + 0.251 \times 5^{\frac{1}{3}}


Qx=66.1895+0.251×1.709976Qx = 66.1895 + 0.251 \times 1.709976


Qx=66.1895+0.4292Qx = 66.1895 + 0.4292


Qx=66.6187Qx = 66.6187


Price elasticity of demand=dQxdP×PQPrice\space elasticity\space of\space demand = \frac{dQx}{dP} \times \frac{P }{ Q}


Differentiating equation 1, with respect to P, we get dQxdP\frac{dQx}{dP}


dQxdP=13×0.251px23\frac{dQx}{dP} = \frac{1}{3} \times \frac{0.251 }{px^{\frac{2}{3}}}


dQxdP=0.0836px23\frac{dQx}{dP} = \frac{0.0836 }{ px^{\frac{2}{3}}}


Price elasticity of demand=dQxdP×PQPrice \space elasticity\space of\space demand = \frac{dQx}{dP }\times\frac{ P }{ Q}


Price elasticity of demand=[0.0836px23]×[566.6187]Price \space elasticity\space of\space demand = [\frac{0.0836}{ px^{\frac{2}{3}}}]\times* [\frac{5 }{ 66.6187}]


Price elasticity of demand=[0.0836523][566.6187]Price\space elasticity\space of \space demand = [\frac{0.0836 }{ 5^{\frac{2}{3}}}]* [\frac{5 }{ 66.6187}]


Price elasticity of demand=[0.08362.924018][566.6187]Price \space elasticity\space of\space demand = [\frac{0.0836 }{ 2.924018}] * [\frac{5}{66.6187}]


Price elasticity of demand=0.0285×0.0750Price\space elasticity\space of\space demand = 0.0285 \times 0.0750


Price elasticity of demand = 0.0021


Price elasticity of demand is very near to 0, thus we can conclude that the price elasticity of demand is inelastic in nature.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS