At equilibrium level in a closed economy, the level of income is attained at Y=Aggregate demand
where;
AD=Consumption+investment+Government Expenditure.
Budget surplus=Government Revenue−Government Expenditure.
Where;
Government Revenue=Tax and Government Expenditure=Transfers and G
a)
Given,
C=50+0.8YD
I=70
G=200
TR=100
t=20
Equilibrium\spaceCondition: Y=AD
Where AD=C+I+G
=>AD=50+0.8YD+70+200
=>AD=50+0.8(Y−0.2Y+100)+70+200[SinceYD=Y−TAX+TRANSFERS]
=>AD=50+0.8Y−0.16+80+70+200
50+0.8Y−0.16+80+70+200
=>AD=400+0.64Y
400+0.64Y
Now, set Y=AD
we get, Y=400+0.64Y
=>Y−0.64Y
Y−0.64Y=400
=>0.36Y=400
0.36Y=400
=>Y=0.361
×400
Y=10.36×400
=>Y=1111.1
Y=1111.1
Hence, =MultiplierαG=0.361
=2.7
b)
BudgetSurplus=Revenue−GovernmentexpenditureBudgetSurplus=Revenue−Governmentexpenditure=>BudgetSurplus=Tax−Transfers−GovernmentExpenditureBudgetSurplus=Tax−Transfers−GovernmentExpenditure
=>BudegtSurplus=0.2Y−100−200BudegtSurplus=0.2Y−100−200=>BudgetSurplus=(0.2×1111.1)−100−200BudgetSurplus=(0.2×1111.1)−100−200=>BudegtSurplus=222.2−300BudegtSurplus=222.2−300=>BudgetSurplus=−77.8BudgetSurplus=−77.8
Hence, a negative value means it is a deficit.
c)
Now, Given t=0.25
We know, Equilibrium condition: Y=AD
Where AD=C+I+G
=>AD=50+0.8YD+70+200
=>AD=50+0.8(Y−0.25Y+100)+70+200[SinceYD=Y−TAX+TRANSFERS]
=>AD=50+0.8Y−0.2+80+70+200
50+0.8Y−0.2+80+70+200
=>AD=400+0.6Y
400+0.6Y
Now, set Y=AD
we get, Y=400+0.6Y
Y=400+0.6Y
=>Y−0.6Y
Y−0.6Y=400
=>0.4Y=400
=>0.4Y=400
=>Y=0.41×400
Y=1000
Hence, =MultiplierαG=1
0.4αG=0.41=2.5
d)
New budget surplus =(5100+570+5.25)−5200=475.25
change in budget surplus =475.25−475.20=0.05
Change in surplus will be if C5.9
e)
Multiplier is 1 when t=5.1 because the higher the value of t, the lower the multiplier and vice versa.
Comments