a)"Y=K^{0.5}N0.7"
(I)"\\frac{\\delta Y}{\\delta K}=K^{-0.5}N0.7>0\\space as\\space K,N>0\\\\\n\n\\frac{\\delta Y}{\\delta N}=0.7K^{0.5}N^{-0.3}>0\\space as\\space K,N>0"
Hence it is increasing in both inputs
ii)
"MP_K=\\frac{\\delta Y}{\\delta K}=0.5K^{-0.5}N0.7\\\\\\frac{\\delta MP_K}{\\delta K}=-(0.5)(0.5)K^{-1.5}N^{0.7}<0\\\\\n\n\n\n\nMP_N=\\frac{\\delta Y}{\\delta N}=0.7K^{0.5}N^{-0.3}\\\\\\frac{\\delta MP_N}{\\delta N}=-(0.7)(0.3)K^{0.5}N^{-1.3}<0\\\\\nAs\\space \n\n\n\\frac{\\delta MP_K}{\\delta K}<0 \\space and \\space \\frac{\\delta MP_N}{\\delta N}"
It satisfies diminishing marginal products
iii)
"Y=K^0.5N0.7"
Doubling K and N we get
"Y(2K,2N)=(2K)^{0.5}(2N)0.7\\\\=(2)^{1.2}K^{0.5}N0.7"
As"\\space N^{1.2}" =Doubling K and N more than double Y. Therefore it does not satisfy constant returns to scale.
iv)
This is a cobb-douglas production function hence there is no complementarity between capital and labor.
b)"Y=2K+3N"
(I)
"\\\\\n\\frac{\\delta Y}{\\delta K}=MP_K=2>0\\space as\\space and \\\\\\frac{\\delta Y}{\\delta N}=MP_N=3>0"
Hence it is increasing in both inputs
ii)
"\\frac{\\delta MP_K}{\\delta K}=-(0.3)(0.7)K^{-1.7}N^{0.7}<0\\\\\n\n\n\n\n\n \\frac{\\delta MP_N}{\\delta N}=-(-0.7)(0.3)K^{0.3}N^{-1.3}<0"
It satisfies diminishing marginal products
iii)
"Y=2K+3N"
Doubling K and N we get
"Y(2K,2N)=2(2K)+3(2N)\\\\=2[2K+3N]=2Y"
As doubling K and N doubles Y. Therefore it satisfies constant returns to scale.
iv)
Now, slope "\\frac{MP_K}{MP_N}=\\frac{2}{3}=constant"
Hence both inputs are substitutes of each other.
C)"Y=K^{0.5}N^{0.7}"
(I)
"\\frac{\\delta Y}{\\delta K}=MP_K=0.3K^{-0.7}N^{0.7}>0\\\\\n\\frac{\\delta Y}{\\delta N}=MP_N=0.7K^{0.3}N^{-0.3}>0"
Hence it is increasing in both inputs
ii)
"MP_K=\\frac{\\delta Y}{\\delta K}=0.5K^{-0.5}N0.7\\\\\\frac{\\delta MP_K}{\\delta K}=-(0.5)(0.5)K^{-1.5}N^{0.7}<0\\\\\n\n\n\n\nMP_N=\\frac{\\delta Y}{\\delta N}=0.7K^{0.5}N^{-0.3}\\\\\\frac{\\delta MP_N}{\\delta N}=-(0.7)(0.3)K^{0.5}N^{-1.3}<0\\\\\nAs\\space \n\n\n\\frac{\\delta MP_K}{\\delta K}<0 \\space and \\space \\frac{\\delta MP_N}{\\delta N}"
It satisfies diminishing marginal products
iii)
"Y=K^{0.3}N^{0.7}"
Doubling K and N we get
"Y(2K,2N)=(2K)^{0.3}(2N)0.7\\\\=2K^{0.3}N^{0.7}\\\\=2Y"
Doubling K and N doubles Y. Therefore it satisfies constant returns to scale.
iv)
This is a cobb-douglas production function hence there is no complementarity between capital and labor.
D)"Y=2N+2"
(I)
"\\\\\n\\frac{\\delta Y}{\\delta K}=MP_K=0=0\\space as\\space and \\\\\\frac{\\delta Y}{\\delta N}=MP_N=2>0"
Hence it is increasing in both inputs
ii)
"\\frac{\\delta MP_K}{\\delta K}=0\\\\\n\n\n\n\n\n \\frac{\\delta MP_N}{\\delta N}=>0"
It does not satisfy diminishing marginal products
iii)
"Y=2N+2"
Doubling K and N we get
"Y(2N)=2(2N)+2"
Therefore it does not satisfy constant returns to scale.
iv)
There is no complementarity between capital and labor
Comments
Leave a comment