Question #246131
Consider a dynamic economy withgk= 3%,gh−i= 2%gh−ni= 1%,Q=K0.5H0.2L0.3population growth = 1.5%, population growth with immigration = 2.5%.Calculate the errors for ignoring human-capital contribution of immigrants in the calculationof real-wage series for 40 periods.
1
Expert's answer
2021-10-04T10:18:46-0400

a)Y=K0.5N0.7Y=K^{0.5}N0.7

(I)δYδK=K0.5N0.7>0 as K,N>0δYδN=0.7K0.5N0.3>0 as K,N>0\frac{\delta Y}{\delta K}=K^{-0.5}N0.7>0\space as\space K,N>0\\ \frac{\delta Y}{\delta N}=0.7K^{0.5}N^{-0.3}>0\space as\space K,N>0

Hence it is increasing in both inputs

ii)

MPK=δYδK=0.5K0.5N0.7δMPKδK=(0.5)(0.5)K1.5N0.7<0MPN=δYδN=0.7K0.5N0.3δMPNδN=(0.7)(0.3)K0.5N1.3<0As δMPKδK<0 and δMPNδNMP_K=\frac{\delta Y}{\delta K}=0.5K^{-0.5}N0.7\\\frac{\delta MP_K}{\delta K}=-(0.5)(0.5)K^{-1.5}N^{0.7}<0\\ MP_N=\frac{\delta Y}{\delta N}=0.7K^{0.5}N^{-0.3}\\\frac{\delta MP_N}{\delta N}=-(0.7)(0.3)K^{0.5}N^{-1.3}<0\\ As\space \frac{\delta MP_K}{\delta K}<0 \space and \space \frac{\delta MP_N}{\delta N}

It satisfies diminishing marginal products

iii)

Y=K0.5N0.7Y=K^0.5N0.7

Doubling K and N we get

Y(2K,2N)=(2K)0.5(2N)0.7=(2)1.2K0.5N0.7Y(2K,2N)=(2K)^{0.5}(2N)0.7\\=(2)^{1.2}K^{0.5}N0.7

As N1.2\space N^{1.2} =Doubling K and N more than double Y. Therefore it does not satisfy constant returns to scale.

iv)

This is a cobb-douglas production function hence there is no complementarity between capital and labor.


b)Y=2K+3NY=2K+3N

(I)

δYδK=MPK=2>0 as andδYδN=MPN=3>0\\ \frac{\delta Y}{\delta K}=MP_K=2>0\space as\space and \\\frac{\delta Y}{\delta N}=MP_N=3>0

Hence it is increasing in both inputs

ii)

δMPKδK=(0.3)(0.7)K1.7N0.7<0δMPNδN=(0.7)(0.3)K0.3N1.3<0\frac{\delta MP_K}{\delta K}=-(0.3)(0.7)K^{-1.7}N^{0.7}<0\\ \frac{\delta MP_N}{\delta N}=-(-0.7)(0.3)K^{0.3}N^{-1.3}<0

It satisfies diminishing marginal products

iii)

Y=2K+3NY=2K+3N

Doubling K and N we get

Y(2K,2N)=2(2K)+3(2N)=2[2K+3N]=2YY(2K,2N)=2(2K)+3(2N)\\=2[2K+3N]=2Y

As doubling K and N doubles Y. Therefore it satisfies constant returns to scale.

iv)

Now, slope MPKMPN=23=constant\frac{MP_K}{MP_N}=\frac{2}{3}=constant

Hence both inputs are substitutes of each other.


C)Y=K0.5N0.7Y=K^{0.5}N^{0.7}

(I)

δYδK=MPK=0.3K0.7N0.7>0δYδN=MPN=0.7K0.3N0.3>0\frac{\delta Y}{\delta K}=MP_K=0.3K^{-0.7}N^{0.7}>0\\ \frac{\delta Y}{\delta N}=MP_N=0.7K^{0.3}N^{-0.3}>0

Hence it is increasing in both inputs

ii)

MPK=δYδK=0.5K0.5N0.7δMPKδK=(0.5)(0.5)K1.5N0.7<0MPN=δYδN=0.7K0.5N0.3δMPNδN=(0.7)(0.3)K0.5N1.3<0As δMPKδK<0 and δMPNδNMP_K=\frac{\delta Y}{\delta K}=0.5K^{-0.5}N0.7\\\frac{\delta MP_K}{\delta K}=-(0.5)(0.5)K^{-1.5}N^{0.7}<0\\ MP_N=\frac{\delta Y}{\delta N}=0.7K^{0.5}N^{-0.3}\\\frac{\delta MP_N}{\delta N}=-(0.7)(0.3)K^{0.5}N^{-1.3}<0\\ As\space \frac{\delta MP_K}{\delta K}<0 \space and \space \frac{\delta MP_N}{\delta N}

It satisfies diminishing marginal products

iii)

Y=K0.3N0.7Y=K^{0.3}N^{0.7}

Doubling K and N we get

Y(2K,2N)=(2K)0.3(2N)0.7=2K0.3N0.7=2YY(2K,2N)=(2K)^{0.3}(2N)0.7\\=2K^{0.3}N^{0.7}\\=2Y

Doubling K and N doubles Y. Therefore it satisfies constant returns to scale.

iv)

This is a cobb-douglas production function hence there is no complementarity between capital and labor.


D)Y=2N+2Y=2N+2

(I)

δYδK=MPK=0=0 as andδYδN=MPN=2>0\\ \frac{\delta Y}{\delta K}=MP_K=0=0\space as\space and \\\frac{\delta Y}{\delta N}=MP_N=2>0

Hence it is increasing in both inputs

ii)

δMPKδK=0δMPNδN=>0\frac{\delta MP_K}{\delta K}=0\\ \frac{\delta MP_N}{\delta N}=>0

It does not satisfy diminishing marginal products

iii)

Y=2N+2Y=2N+2

Doubling K and N we get

Y(2N)=2(2N)+2Y(2N)=2(2N)+2

Therefore it does not satisfy constant returns to scale.

iv)

There is no complementarity between capital and labor


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS