Question #242336

Suppose the utility function for Osa is given U = f (Y, X) = X0.5 Y0.5. Given that the price of commodity X is Kshs. 10 per unit and that of community Y is Kshs. 12 per unit. Using Lagrangian multiplier technique determine units of the two commodities Osa will buy given an income of Kshs. 48,000 in order to maximize her utility, then compute both the values of U and lambda and provide an economic interpretation for lambda.


1
Expert's answer
2021-09-27T11:11:25-0400

Px=10py=12M=48000Budget ConstraintXPx+YPy=M10X+12Y=48000Px= 10 \\ py = 12 \\ M = 48000 \\ Budget\ Constraint\\ XPx + YPy = M \\10X + 12Y = 48000

Maximize X0.5 Y0.5Subject to 10X+12Y=48000Maximize\ X\\ ^0\\^.\\^5 \ Y\\ ^0\\^.\\^5 \\ Subject\ to\ 10X + 12Y = 48000

Setitng up Lagrange:L=X0.5 Y0.5+λ(4800010X12Y)Setitng \ up \ Lagrange:\\ L =X\\ ^0\\^.\\^5 \ Y\\ ^0\\^.\\^5+ \lambda(48000 - 10X - 12Y)

dLdX=X0.5 Y0.510λ=0........................(1)\frac{dL}{dX} =X\\ ^0\\^.\\^5 \ Y\\ ^0\\^.\\^5 - 10\lambda = 0 ........................(1)

dLdY=X0.5 Y0.512λ=0........................(2)\frac{dL}{dY} =X\\ ^0\\^.\\^5 \ Y\\ ^-\\^0\\^.\\^5 - 12\lambda = 0 ........................(2)

dLdλ=4800010X12Y=0......................(3)\frac{dL}{d\lambda} =48000 - 10X - 12Y = 0 ......................(3)


Dividing (1) and (2):

X0.5 Y0.5/X0.5 Y0.5=10λ12λX\\ ^0\\^.\\^5 \ Y\\ ^-\\^0\\^.\\^5 / X\\ ^0\\^.\\^5 \ Y\\^0\\^.\\^5 = \frac{10\lambda}{12\lambda}

YX=56\frac{Y}{X} = \frac{5}{6}

Y=5X6Y = \frac{5X}{6}

Substituting the value of Y in (3)

4800010X12×5X6=048000 - 10X - 12\times \frac{5X}{6} = 0

4800020X=048000 - 20X = 0

X=2400X = 2400

Y=5×24006Y = 5 \times \frac{2400}{6}

Y=2000Y = 2000

U=X0.5 Y0.5U = X\\ ^0\\^.\\^5 \ Y\\ ^0\\^.\\^5

U=24000.5 20000.5U = 2400\\ ^0\\^.\\^5 \ 2000\\ ^0\\^.\\^5

U=2191U = 2191

From (1)

0.5Y0.5 Y0.510λ=00.5Y\\ ^0\\^.\\^5 \ Y\\ ^0\\^.\\^5 - 10\lambda = 0

0.5×24000.5 20000.510λ=00.5 \times 2400\\ ^0\\^.\\^5 \ 2000\\ ^0\\^.\\^5 - 10\lambda = 0

10λ=0.45610\lambda = 0.456

λ=0.0456\lambda = 0.0456

Economic interpretation:

At the utility maximizing point the marginal utility per dollarobtained from the consumption of X equal the marginal utility per dollar obtained fromthe consumption of Y which is equal to λ,i.e.,0.0456At\ the\ utility\ maximizing\ point\ the\ marginal\ utility\ per\ dollar\\ obtained\ from\ the\ consumption\ of\ X\ equal\ the\ marginal\ utility\\ \ per\ dollar\ obtained\ from\\ the\ consumption\ of\ Y\ which\ is\ equal\ to\ \lambda, i.e., 0.0456


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS