Px=10py=12M=48000Budget ConstraintXPx+YPy=M10X+12Y=48000
Maximize X0.5 Y0.5Subject to 10X+12Y=48000
Setitng up Lagrange:L=X0.5 Y0.5+λ(48000−10X−12Y)
dXdL=X0.5 Y0.5−10λ=0........................(1)
dYdL=X0.5 Y−0.5−12λ=0........................(2)
dλdL=48000−10X−12Y=0......................(3)
Dividing (1) and (2):
X0.5 Y−0.5/X0.5 Y0.5=12λ10λ
XY=65
Y=65X
Substituting the value of Y in (3)
48000−10X−12×65X=0
48000−20X=0
X=2400
Y=5×62400
Y=2000
U=X0.5 Y0.5
U=24000.5 20000.5
U=2191
From (1)
0.5Y0.5 Y0.5−10λ=0
0.5×24000.5 20000.5−10λ=0
10λ=0.456
λ=0.0456
Economic interpretation:
At the utility maximizing point the marginal utility per dollarobtained from the consumption of X equal the marginal utility per dollar obtained fromthe consumption of Y which is equal to λ,i.e.,0.0456
Comments