Calcuate the bond price at the time of purchasing (beginning value)
B o n d p r i c e = C o u p o n × ( 1 − ( 1 ( 1 + r ) n ) r ) + F a c e v a l u e ( 1 + r ) n Bond\space price=Coupon\times(\frac{1-(\frac{1}{(1+r)^n})}{r})+\frac{Face\space value}{(1+r)^n} B o n d p r i ce = C o u p o n × ( r 1 − ( ( 1 + r ) n 1 ) ) + ( 1 + r ) n F a ce v a l u e
Here,
"r" is the rate
"n" is the number of compounding period
Substitute the values in the formula
B o n d p r i c e = 0 × ( 1 − ( 1 ( 1 + 0.12 2 ) 10 × 2 ) 0.12 2 ) + $ 1 , 000 ( 1 + 0.12 2 ) 10 × 2 = $ 311.80 Bond\space price=0\times(\frac{1-(\frac{1}{(1+\frac{0.12}{2})^{10\times2}})}{\frac{0.12}{2}}) +\frac{\$1,000}{(1+\frac{0.12}{2})^{10\times2}}=\$311.80 B o n d p r i ce = 0 × ( 2 0.12 1 − ( ( 1 + 2 0.12 ) 10 × 2 1 ) ) + ( 1 + 2 0.12 ) 10 × 2 $1 , 000 = $311.80
Calculate the current bond price (ending wealth value)
Here,
the number of years to maturity will be 8 years (i.e. 10 years-8 years)
B o n d p r i c e = 0 × ( 1 − ( 1 ( 1 + 0.08 2 ) 8 × 2 ) 0.08 2 ) + $ 1 , 000 ( 1 + 0.08 2 ) 8 × 2 = $ 533.91 Bond\space price=0\times(\frac{1-(\frac{1}{(1+\frac{0.08}{2})^{8\times2}})}{\frac{0.08}{2}}) +\frac{\$1,000}{(1+\frac{0.08}{2})^{8\times2}}=\$533.91 B o n d p r i ce = 0 × ( 2 0.08 1 − ( ( 1 + 2 0.08 ) 8 × 2 1 ) ) + ( 1 + 2 0.08 ) 8 × 2 $1 , 000 = $533.91
Calculate the annualized horizon yield
$ 311.80 = ∑ t = 1 2 × 2 0 2 ( 1 + i 2 ) 2 × 2 \$311.80=\displaystyle\sum_{t=1}^{2\times 2}\frac{\frac{0}{2}}{(1+\frac{i}{2})^{2\times 2}} $311.80 = t = 1 ∑ 2 × 2 ( 1 + 2 i ) 2 × 2 2 0
$ 311.80 = $ 533.91 ( 1 + 1 2 ) \$311.80=\frac{\$533.91}{(1+\frac{1}{2})} $311.80 = ( 1 + 2 1 ) $533.91
( 1 + i 2 ) 4 = $ 533.91 $ 311.80 (1+\frac{i}{2})^4=\frac{\$533.91}{\$311.80} ( 1 + 2 i ) 4 = $311.80 $533.91
( 1 + i 2 ) = $ 533.91 $ 311.80 4 (1+\frac{i}{2})=\sqrt[4]{\frac{\$533.91}{\$311.80}} ( 1 + 2 i ) = 4 $311.80 $533.91
1 + i 2 = 1.712348 4 1+\frac{i}{2}=\sqrt[4]{1.712348} 1 + 2 i = 4 1.712348
i = ( 1.1439 − 1 ) × 2 = 0.2879 o r 28.79 % i=(1.1439-1)\times2\\=0.2879\space or\space 28.79\% i = ( 1.1439 − 1 ) × 2 = 0.2879 or 28.79%
Comments