Calcuate the bond price at the time of purchasing (beginning value)
"Bond\\space price=Coupon\\times(\\frac{1-(\\frac{1}{(1+r)^n})}{r})+\\frac{Face\\space value}{(1+r)^n}"
Here,
"r" is the rate
"n" is the number of compounding period
Substitute the values in the formula
"Bond\\space price=0\\times(\\frac{1-(\\frac{1}{(1+\\frac{0.12}{2})^{10\\times2}})}{\\frac{0.12}{2}}) +\\frac{\\$1,000}{(1+\\frac{0.12}{2})^{10\\times2}}=\\$311.80"
Calculate the current bond price (ending wealth value)
Here,
the number of years to maturity will be 8 years (i.e. 10 years-8 years)
"Bond\\space price=0\\times(\\frac{1-(\\frac{1}{(1+\\frac{0.08}{2})^{8\\times2}})}{\\frac{0.08}{2}}) +\\frac{\\$1,000}{(1+\\frac{0.08}{2})^{8\\times2}}=\\$533.91"
Calculate the annualized horizon yield
"\\$311.80=\\displaystyle\\sum_{t=1}^{2\\times 2}\\frac{\\frac{0}{2}}{(1+\\frac{i}{2})^{2\\times 2}}"
"\\$311.80=\\frac{\\$533.91}{(1+\\frac{1}{2})}"
"(1+\\frac{i}{2})^4=\\frac{\\$533.91}{\\$311.80}"
"(1+\\frac{i}{2})=\\sqrt[4]{\\frac{\\$533.91}{\\$311.80}}"
"1+\\frac{i}{2}=\\sqrt[4]{1.712348}"
"i=(1.1439-1)\\times2\\\\=0.2879\\space or\\space 28.79\\%"
Comments
Leave a comment