Answer to Question #230959 in Macroeconomics for workiye Misgana Ha

Question #230959

1.    Given y = (x, z) = 6x2 + 3xz4 where

X(B, E, T) = B2 + 2E + TB

Z(B, E, T) = (ETB)1 + B + E Then, find the partial derivatives of y with respect to B, E, and T.


1
Expert's answer
2021-08-30T14:35:46-0400

Given that,

y=(x,z)=6x2+3xz4whereX(B,E,T)=B2+2E+TBZ(B,E,T)=(ETB)1+B+ESo,y=6(B2+2E+TB)2+3(B2+2E+TB)(ETB+B+E)4y = (x, z) = 6x^2 + 3xz^4 \\where\\ X(B, E, T) = B^2 + 2E + TB\\ Z(B, E, T) = (ETB)1 + B + E \\ So,\\ y=6(B^2+2E+TB)^2+3(B^2+2E+TB)(ETB+B+E)^4

Integrating partially with respect to B,

yB=B[6(B2+2E+TB)2]+B[6(B2+2E+TB)(ETB+B+E)4]=12(B2+2E+TB)(2B+T)+3(2B+T)(ETB+B+E)4+12(B2+2E+TB)(ETB+B+E)3(ET+1)\frac{∂y}{∂B}=\frac{∂}{∂B}[6(B^2+2E+TB)^2]+\frac{∂}{∂B}[6(B^2+2E+TB)(ETB+B+E)^4]\\=12(B^2+2E+TB)(2B+T)+3(2B+T)(ETB+B+E)^4+12(B^2+2E+TB)(ETB+B+E)^3(ET+1)

Integrating partially with respect to E,

yE=E[6(B2+2E+TB)2]+E[6(B2+2E+TB)(ETB+B+E)4]=12(B2+2E+TB)×2+3(ETB+B+E)4×2+3(B2+2E+TB)×4(ETB+B+E)4(TB+1)=24(B2+2E+TB)+6(ETB+B+E)4+12(B2+2E+TB)(ETB+B+E)4(TB+1)\frac{∂y}{∂E}=\frac{∂}{∂E}[6(B^2+2E+TB)^2]+\frac{∂}{∂E}[6(B^2+2E+TB)(ETB+B+E)^4]\\=12(B^2+2E+TB)×2+3(ETB+B+E)^4×2+3(B^2+2E+TB)×4(ETB+B+E)^4(TB+1)\\=24(B^2+2E+TB)+6(ETB+B+E)^4+12(B^2+2E+TB)(ETB+B+E)^4(TB+1)


Integrating partially with respect to T,

yT=12(B2+2E+TB)B+3(ETB+B+E)4B+12(B2+2E+TB)(ETB+B+E)3EB\frac{∂y}{∂T}=12(B^2+2E+TB)B+3(ETB+B+E)^4B+12(B^2+2E+TB)(ETB+B+E)^3EB

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment