1. Given y = (x, z) = 6x2 + 3xz4 where
X(B, E, T) = B2 + 2E + TB
Z(B, E, T) = (ETB)1 + B + E Then, find the partial derivatives of y with respect to B, E, and T.
Given that,
"y = (x, z) = 6x^2 + 3xz^4 \\\\where\\\\\n\nX(B, E, T) = B^2 + 2E + TB\\\\\n\nZ(B, E, T) = (ETB)1 + B + E \\\\\n\nSo,\\\\\n\ny=6(B^2+2E+TB)^2+3(B^2+2E+TB)(ETB+B+E)^4"
Integrating partially with respect to B,
"\\frac{\u2202y}{\u2202B}=\\frac{\u2202}{\u2202B}[6(B^2+2E+TB)^2]+\\frac{\u2202}{\u2202B}[6(B^2+2E+TB)(ETB+B+E)^4]\\\\=12(B^2+2E+TB)(2B+T)+3(2B+T)(ETB+B+E)^4+12(B^2+2E+TB)(ETB+B+E)^3(ET+1)"
Integrating partially with respect to E,
"\\frac{\u2202y}{\u2202E}=\\frac{\u2202}{\u2202E}[6(B^2+2E+TB)^2]+\\frac{\u2202}{\u2202E}[6(B^2+2E+TB)(ETB+B+E)^4]\\\\=12(B^2+2E+TB)\u00d72+3(ETB+B+E)^4\u00d72+3(B^2+2E+TB)\u00d74(ETB+B+E)^4(TB+1)\\\\=24(B^2+2E+TB)+6(ETB+B+E)^4+12(B^2+2E+TB)(ETB+B+E)^4(TB+1)"
Integrating partially with respect to T,
"\\frac{\u2202y}{\u2202T}=12(B^2+2E+TB)B+3(ETB+B+E)^4B+12(B^2+2E+TB)(ETB+B+E)^3EB"
Comments
Leave a comment