Given that,
y=(x,z)=6x2+3xz4whereX(B,E,T)=B2+2E+TBZ(B,E,T)=(ETB)1+B+ESo,y=6(B2+2E+TB)2+3(B2+2E+TB)(ETB+B+E)4
Integrating partially with respect to B,
∂B∂y=∂B∂[6(B2+2E+TB)2]+∂B∂[6(B2+2E+TB)(ETB+B+E)4]=12(B2+2E+TB)(2B+T)+3(2B+T)(ETB+B+E)4+12(B2+2E+TB)(ETB+B+E)3(ET+1)
Integrating partially with respect to E,
∂E∂y=∂E∂[6(B2+2E+TB)2]+∂E∂[6(B2+2E+TB)(ETB+B+E)4]=12(B2+2E+TB)×2+3(ETB+B+E)4×2+3(B2+2E+TB)×4(ETB+B+E)4(TB+1)=24(B2+2E+TB)+6(ETB+B+E)4+12(B2+2E+TB)(ETB+B+E)4(TB+1)
Integrating partially with respect to T,
∂T∂y=12(B2+2E+TB)B+3(ETB+B+E)4B+12(B2+2E+TB)(ETB+B+E)3EB
Comments
Leave a comment