Question #225523
Suppose a perfectly competitive firm with total cost function given as:
TC= 400+20Q-2Q2+Q3.
A. Find profit maximizing level of output and the maximum profit if the average revenue equals $180.
B. Calculate the shutdown level of output and price
1
Expert's answer
2021-08-12T10:27:31-0400

Given the values:

TC=400+20Q2Q2+Q3AR=MR=$180TC=400+20Q−2Q^2+Q^3\\AR = MR = \$180

a:

TC=400+20Q2Q2+Q3MC=dTCdQ=204Q+3Q2Now, MC=MR204Q+3Q2=1800=180(204Q+3Q2)0=18020+4Q3Q20=160+4Q3Q2TC=400+20Q−2Q^2+Q^3\\MC =\frac{ dTC}{dQ}=20−4Q+3Q^2\\Now,\space MC = MR\\20−4Q+3Q^2=180\\0=180 − (20−4Q+3Q^2)\\0=180−20+4Q−3Q^2\\0=160+4Q−3Q^2

Now solve for the Q,  thus, Q=8 and Q=203Q=\frac{−20}{ 3}

So consider the positive value Q=8.

Thus, profit maximizing level of output is = 8

Profit=TRTCProfit=(MR×Q)(400+20Q2Q2+Q3)Profit=(180×8)(400+20×82×82+83)Profit=1440(400+160128+512)Profit=1440(944)Profit=$496Profit = TR − TC\\Profit = (MR×Q)−(400+20Q−2Q^2+Q^3)\\Profit = (180×8)−(400+20×8−2×8^2+8^3)\\Profit = 1440−(400+160−128+512)\\Profit = 1440−(944)\\Profit = \$496


b:

Shutdown point,

AVC=MCTC=FC+VCThus, VC=20Q2Q2+Q3AVC=VCQAVC=20Q2Q2+Q3QAVC=202Q+Q2At shutdown point,MC=AVC204Q+3Q2=202Q+Q2204Q+3Q2(202Q+Q2)=0204Q+3Q220+2QQ2=02Q+2Q2=02Q(1+Q)=01+Q=0Q=1AVC = MC\\TC = FC+VC\\Thus, \space VC = 20Q−2Q^2+Q^3\\AVC=\frac{VC}{Q}\\AVC=\frac{20Q−2Q^2+Q^3}{Q}\\AVC=20−2Q+Q^2\\At\space shutdown\space point,\\ MC=AVC\\20−4Q+3Q^2=20−2Q+Q^2\\20−4Q+3Q^2−(20−2Q+Q^2)=0\\20−4Q+3Q^2−20+2Q−Q^2=0\\−2Q+2Q^2=0\\2Q(−1+Q)=0\\−1+Q=0\\Q=1

shutdown level of quantity = 1


P=MCP=204Q+3Q2P=204(1)+3(1)2P=204+3P=$19P=MC\\P=20−4Q+3Q^2\\P=20−4(1)+3(1)^2\\P=20−4+3\\P=\$19

shutdown price =$19


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS