Given the values:
TC=400+20Q−2Q2+Q3AR=MR=$180
a:
TC=400+20Q−2Q2+Q3MC=dQdTC=20−4Q+3Q2Now, MC=MR20−4Q+3Q2=1800=180−(20−4Q+3Q2)0=180−20+4Q−3Q20=160+4Q−3Q2
Now solve for the Q, thus, Q=8 and Q=3−20
So consider the positive value Q=8.
Thus, profit maximizing level of output is = 8
Profit=TR−TCProfit=(MR×Q)−(400+20Q−2Q2+Q3)Profit=(180×8)−(400+20×8−2×82+83)Profit=1440−(400+160−128+512)Profit=1440−(944)Profit=$496
b:
Shutdown point,
AVC=MCTC=FC+VCThus, VC=20Q−2Q2+Q3AVC=QVCAVC=Q20Q−2Q2+Q3AVC=20−2Q+Q2At shutdown point,MC=AVC20−4Q+3Q2=20−2Q+Q220−4Q+3Q2−(20−2Q+Q2)=020−4Q+3Q2−20+2Q−Q2=0−2Q+2Q2=02Q(−1+Q)=0−1+Q=0Q=1
shutdown level of quantity = 1
P=MCP=20−4Q+3Q2P=20−4(1)+3(1)2P=20−4+3P=$19
shutdown price =$19
Comments