Answer to Question #224773 in Macroeconomics for Tuji Yusuf

Question #224773
given a short run cost function as tc =1/3q^3-2q^2+60q+100 then find
A. what is the minimum value of avc & mc
B. Function or expression of TVC, AVC, AFC, ATC and MC
1
Expert's answer
2021-08-10T10:30:51-0400

a)TVC=13q32q2+60qAVC=13q22q+60TC=q332q2+60q+100a)\\ TVC=\frac{1}{3}q^3−2q^2+60q\\AVC=\frac{1}{3}q^2−2q+60\\ TC=\frac{q^3}{3}−2q^2+60q+100

MC=ddq[q332q2+60q+100]MC=\frac{d}{dq}[\frac{q^3}{3}−2q^2+60q+100]

MC=13.ddq[q3]2.ddq[q2]+60.ddq[q]+ddq[100]MC=\frac{1}{3}.\frac{d}{dq}[q^3]−2.\frac{d}{dq}[q^2]+60.\frac{d}{dq}[q]+\frac{d}{dq}[100]

MC=3q23(2×2q)+(60×1)+0MC=q24q+60\\MC=\frac{3q^2}{3}−(2×2q)+(60×1)+0\\MC=q^2−4q+60

For minimum value, 

AVC=MC13q22q+60=q24q+6013q2q22q+4q+6060=0q23q23+2q=02q2+6q=02q26q=02q(q3)=0q=3AVC=MC\\ \frac{1}{3}q^2−2q+60=q^2−4q+60\\\frac{1}{3}q^2−q^2−2q+4q+60−60=0\\\frac{q^2−3q^2}{3}+2q=0\\−2q^2+6q=0\\2q^2−6q=0\\2q(q−3)=0\\q=3

Minimum value is q=3


b)TVC=13q32q2+60qAVC=TVCq=13q22q+60FC=100AFC=100qATC=TCq=13q22q+60+100qATC=13q22q+100q+60MC=q24q+60b)\\ TVC=\frac{1}{3}q^3−2q^2+60q\\AVC=\frac{TVC}{q}= \frac{1}{3}q^2−2q+60\\FC=100\\AFC=\frac{100}{q}\\ATC=\frac{TC}{q}=\frac{1}{3}q^2−2q+60+\frac{100}{q}\\ATC=\frac{1}{3}q^2−2q+\frac{100}{q}+60\\MC=q^2−4q+60


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment