y=lnx+3x−2
First derivative
y′=dxd[lnx+3x−2]
y′=dxd[lnx]+3dxd[x]+dxd[−2]]
y′=x1+3(1)+0
y′=x1+3 ....................1st
Second derivative
y′′=dxd[x1+3]
y′=−x21 ....................2nd
Then for
y=x
y′=dxd[x]=1 ........1st derivative
y′′=dxd[1]=0 .........2nd derivative
Comments