y=lnx+3x−2 
First derivative 
y′=dxd[lnx+3x−2] 
y′=dxd[lnx]+3dxd[x]+dxd[−2]] 
y′=x1+3(1)+0 
y′=x1+3     ....................1st 
Second derivative 
y′′=dxd[x1+3] 
y′=−x21      ....................2nd 
Then for
y=x 
y′=dxd[x]=1 ........1st derivative 
y′′=dxd[1]=0 .........2nd derivative 
                             
Comments