If the supply and demand functions are given by p=20e0.4Q and p=100e-0.2Q, respectively, find the equilibrium price and quantity, and calculate the consumer’s and producer’s surplus.
Given,
Supply function:
"p=20e^{\n\n0.4Q}"
Supply function:
"p=100e^\n\n{\u22120.2Q}"
Note: the values will be in approx as the exponential function is given.
At equilibrium, quantity demanded is equal to the quantity supplied:
"20e^\n\n{0.4Q}\n\n=100e^\n\n{\u22120.2Q}\\\\\n\n\\frac{e^\n\n{0.4Q}}{\n\ne^\n\n{\u22120.2Q}}\n\n\n\n=5\n\n\\\\e^\n\n{0.4Q+0.2Q}\n\n=5\\\\\n\ne^\n\n{0.6Q}\n\n=5\\\\\n\n0.6Q=ln5 (e^\n\n{x}\n\n=y\u21d2x=ln(y))\\\\\n\n0.6Q=1.6094\\\\\n\nQ=\\frac{1.6094}\n\n{0.6}\\\\"
"Q=2.68 =3" (nearest integer )
Substitute Q=2.68 in the supply function for price
"p=20\u00d7e^\n{\n\n0.4\u00d72.68}"
"p=20\u00d72.9212"
"p=58.424 = 58" (nearest integer)
Note: nearest integer has been taken for easy calculation.
Equilibrium price = 58
Equilibrium quantity = 3
The formula for consumer surplus (CS) is given below:
"CS=\u222b^Q_0p(Q)dQ\u2212p\u00d7Q (p(Q)=Demand \\space function)\\\\CS=\u222b^{3}_0(100e^{\u22120.2Q})dQ\u221258\u00d73\\\\CS=100[\\frac {e^{\u22120.2Q}}{\u22120.2}]^3_0\u2212174\\\\CS=\\frac{100}{\u22120.2}[e^{\u22120.2\u00d73}\u2212e^{\u22120.2\u00d70}]\u2212174\\\\CS=\u2212500[0.549\u22121]\u2212174\\\\CS=\u2212274.5+500\u2212174\\\\CS=51.5 \\space approx"
The value of consumer surplus is 51.5 approx.
The formula for producer surplus (PS) is given below:
"PS=p\u00d7Q\u2212\u222b^Q_0p(Q)dQ (p(Q)=Supply \\space function)\\\\PS=58\u00d73\u2212\u222b^3_0(20e^{0.4Q})dQ\\\\PS=174\u221220[\\frac{e^{0.4Q}}{0.4}]^3_0\\\\PS=174\u2212\\frac{20}{0.4}[e^{0.4\u00d73}\u2212e^{0.4\u00d70}]\\\\PS=174\u221250[3.320\u22121]\\\\PS=174\u2212166+50\\\\PS=58\n\nThe value of pro"
The value of producer surplus is 58 approx.
Comments
Leave a comment