Question #218018

A monopolistic company has to spend exactly $3000 as total cost for the production of a number of Basic Science and Mathematics textbooks for three schools. The Basic Science textbook sells at P1 = 455 – Q1 – Q2 and the Mathematics textbook at P2 = 910 – Q1 – 4Q2 where P1 and P2 denote the prices; Q1 and Q2 denote the number of Basic science and mathematics textbooks produced respectively. The joint cost of producing these textbooks is given as TC = 5Q1 + 10Q2

(i) Find the maximum profit the producer can make

(ii) Estimate the new profit if the company decides to reduce the total cost

by $50 (Assume that 2nd order conditions are satisfied)


1
Expert's answer
2021-07-20T11:05:50-0400

Total cost for production of no. of basic science and mathematics books = $30

TC= 3000.........(i)

Basic Science price, P1P_1 = 455-Q1Q2Q_1- Q_2

Mathematics price, P2=910Q1Q2P_2=910-Q_1-Q_2

Where,

Q1Q_1 = No. of basic Science books

Q2Q_2 = No. of mathematics books

so, total revenue= Price * Quantity

TR=TR1+TR2TR=TR_1+TR_2

TR=(455Q1+910Q22Q1Q2Q124Q22)TR=(455Q_1+910Q_2-2Q_1Q_2-Q_1^2-4Q_2^2)

TC=5Q+10Q2=3000TC=5Q+10Q_2=3000 From(i)

Q1+2Q2=600Q_1+2Q_2=600

Q1=6002Q2.................(iii)Q_1=600-2Q_2 .................(iii)

TR=455(6002Q2)+910Q22Q2(6002Q2)TR= 455(600-2Q_2)+910Q_2-2Q_2(600-2Q_2)

TR=(1200Q24Q287000)TR=(1200Q_2-4Q_2-87000)

Profit=TRTCProfit=TR-TC

P=1200Q24Q22870003000P=1200Q_2-4Q_2^2-87000-3000

For maximum profit,

dpdQ2=0=12008Q20=0\frac{dp}{dQ_2}=0 = 1200-8Q_2-0=0

Hence maximum profit = 0

Also d2pdQ22=(08)=(8)<0:(Maximum  Condition)\frac{d^2p}{dQ_2^2}= (0-8)=(-8)<0 : (Maximum\space\ Condition)

If the total cost changes

TC=(3000-50)= 2950

Then from equation iii

TC=5Q1+10Q2=2950TC= 5Q_1+10Q_2=2950

TC=Q1+Q2=950TC= Q_1+Q_2=950

TC=Q1=(9502Q2)TC= Q_1=(950-2Q_2)

So, TR=455(5902Q2)+910Q22Q2(5902Q2)(5902Q2)24Q22TR=455(590-2Q_2)+910Q_2-2Q_2(590-2Q_2)-(590-2Q_2)^2-4Q_2^2

TR=(1180Q24Q2279650)TR=(1180Q_2-4Q_2^2-79650)

So profit, p= 1180Q24Q22826001180Q_2-4Q_2^2-82600

for maximum profit: dpdQ2(11808Q20)=0=2=(11808)=147.5\frac{dp}{dQ_2}(1180-8Q_2-0)=0= _2=(\frac{1180}{8})=147.5

maximum profit= (1180147.5)4(147.5)282600=4425(1180*147.5)-4(147.5)^2-82600= 4425

Hence, maximum profit producer can make $4425


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS