"a)\\\\\n\nAt equilibrium,\\\\\n\nY = C + I + G + X - M\\\\\n\n=> Y = 50 + 0.5 ( Y - T + TR) + 100 + 200 + 250 - 20 - 0.25Y\\\\\n\n=> Y = 50 + 0.5 ( Y - 50 - 0.2Y + 100) + 530 - 0.25Y\\\\\n\n=> Y = 50 + 0.5 ( 0.8 Y + 50) + 530 - 0.25Y\\\\\n\n=> Y = 50 + 0.4Y + 25 + 530 - 0.25Y\\\\\n\n=> Y -0.4Y + 0.25Y = 605\\\\\n\n=> 0.85 Y = 605\\\\\n\n=> Y = \\frac{605}{0.85}\\\\\n\n=> Y = 711.76\\\\\n\nEquilibrium \\space Income, Y = 711.76\\\\\n\n\nMultiplier =\\frac{ 1 }{ ( 1 - mpc + mpc\\times t + mpi)} \\\\= \\frac{1}{(1- 0.5 + 0.5\\times 0.2 + 0.25) }\\\\= \\frac{1}{0.85} \\\\= 1.18\\\\\nb)\nT = 50 + 0.2\\times 711.76 = 192.35\\\\\n\nTR = 100\\\\\n\nG = 200\\\\\n\nBudget\\space Deficit = TR + G - T = 300 - 192.325 \\\\= 107.648""c)\\\\\n\nNow,\\space t = 0.25\\\\\n\nSo,\\\\\n\nAt \\space equilibrium,\\\\\n\nY = C + I + G + X - M\\\\\n\n=> Y = 50 + 0.5 ( Y - T + TR) + 100 + 200 + 250 - 20 - 0.25Y\\\\\n\n=> Y = 50 + 0.5 ( Y - 50 - 0.25Y + 100) + 530 - 0.25Y\\\\\n\n=> Y = 50 + 0.5 ( 0.75 Y + 50) + 530 - 0.25Y\\\\\n\n=> Y = 50 + 0.375Y + 25 + 530 - 0.25Y\\\\\n\n=> Y -0.375Y + 0.25Y = 605\\\\\n\n=> 0.875 Y = 605\\\\\n\n=> Y = \\frac{605}{0.875}\\\\\n\n=> Y = 691.43\\\\\n\nEquilibrium \\space Income, Y = 691.43\\\\\n\nMultiplier = \\frac{1 }{ ( 1 - mpc + mpc\\times t + mpi)}\\\\ = \\frac{1}{(1- 0.5 + 0.5\\times 0.25 + 0.25)}\\\\ =\\frac{ 1}{0.875}\\\\ = 1.14"
"d)\n\nT = 50 + 0.25\\times 691.43 = 222.86\\\\\n\nBudget \\space Defecit = TR + G - T = 300 - 222.86 = 77.1425\\\\"
So, Change in Budget due to increase in tax rate"= 107.648 - 77.1425 = 30.5"
e)
Budget stand will be more if mpc increases from 0.8 to 0.9 because mpc and change in budget are positively related.
Comments
Leave a comment