c)
IS equation,
Y = C + I + G Y = 200 + 2 3 ( y − T ) − 300 r + 100 − 100 r + 100 Y = 400 + 2 3 ( Y + 75 − 1 4 Y ) − 400 r Y = 400 + 2 3 ( 3 4 Y + 75 ) − 400 r Y = 400 + 1 2 Y + 50 − 400 r 1 2 Y + 400 r = 450 1 2 d Y + 400 d r = 0 400 d r = − 1 2 d Y d r d Y = − 1 800 Y=C+I+G\\Y=200+\frac{2}{3}(y-T)-300r+100-100r+100\\Y=400+\frac{2}{3}(Y+75-\frac{1}{4}Y)-400r\\Y=400+\frac{2}{3}(\frac{3}{4}Y+75)-400r\\Y=400+\frac{1}{2}Y+50-400r\\\frac{1}{2}Y+400r=450\\\frac{1}{2}dY+400dr=0\\400dr=-\frac{1}{2}dY\\\frac{dr}{dY}=-\frac{1}{800} Y = C + I + G Y = 200 + 3 2 ( y − T ) − 300 r + 100 − 100 r + 100 Y = 400 + 3 2 ( Y + 75 − 4 1 Y ) − 400 r Y = 400 + 3 2 ( 4 3 Y + 75 ) − 400 r Y = 400 + 2 1 Y + 50 − 400 r 2 1 Y + 400 r = 450 2 1 d Y + 400 d r = 0 400 d r = − 2 1 d Y d Y d r = − 800 1
LM equation,
M P = L [ r = i − π e ] \frac{M}{P}=L \space \space \space [r=i-\pi e] P M = L [ r = i − π e ]
⟹ 6300 P = 0.5 Y − 200 ( r + π e ) ⟹ 6300 P = 0.5 Y − 200 r − 20 0.5 Y − 200 r = 6300 P + 20 0.5 d Y − 200 d r = 0 − 200 d r = − 0.5 d Y d r d Y = 0.5 200 = 1 400 1 2 Y + 400 r = 450 1 2 Y − 200 r = 6300 P + 20 \implies \frac{6300}{P}=0.5Y-200(r+\pi e)\\\implies\frac{6300}{P}=0.5Y-200r-20\\0.5Y-200r=\frac{6300}{P}+20\\0.5dY-200dr=0\\-200dr=-0.5dY\\\frac{dr}{dY}=\frac{0.5}{200}=\frac{1}{400}\\\frac{1}{2}Y+400r=450\\\frac{1}{2}Y-200r=\frac{6300}{P}+20 ⟹ P 6300 = 0.5 Y − 200 ( r + π e ) ⟹ P 6300 = 0.5 Y − 200 r − 20 0.5 Y − 200 r = P 6300 + 20 0.5 d Y − 200 d r = 0 − 200 d r = − 0.5 d Y d Y d r = 200 0.5 = 400 1 2 1 Y + 400 r = 450 2 1 Y − 200 r = P 6300 + 20
Y = ∣ 450 400 6300 P − 200 ∣ ∣ 1 2 400 1 2 − 200 ∣ Y=\frac{\begin{vmatrix}
450 & 400 \\
\frac{6300}{P} & -200
\end{vmatrix}}{\begin{vmatrix}
\frac{1}{2} & 400 \\
\frac{1}{2} & -200
\end{vmatrix}} Y = ∣ ∣ 2 1 2 1 400 − 200 ∣ ∣ ∣ ∣ 450 P 6300 400 − 200 ∣ ∣
Y = − 90000 − 2520000 P − 8000 − 100 − 200 Y=\frac{-90000-\frac{2520000}{P}-8000}{-100-200} Y = − 100 − 200 − 90000 − P 2520000 − 8000
Y = 98000 + 2520000 P 300 Y=\frac{98000+\frac{2520000}{P}}{300} Y = 300 98000 + P 2520000
Y = 326.67 + 8400 P d Y d P = − 8400 P 2 Y=326.67+\frac{8400}{P}\\\frac{dY}{dP}=-{\frac{8400}{P^2}} Y = 326.67 + P 8400 d P d Y = − P 2 8400
d)
Y = A ( 0.025 K − 0.5 N ) N Y = 2 3 ( 50 − 0.5 N ) N δ Y δ N = 2 3 × 50 − 2 3 × 1 2 × 2 N ⟹ 2 3 ( 50 − N ) = w ⟹ N d = 50 − 3 2 w Y=A(0.025K-0.5N)N\\Y=\frac{2}{3}(50-0.5N)N\\\frac{\delta Y}{\delta N}=\frac{2}{3}\times50-\frac{2}{3}\times\frac{1}{2}\times 2N\\\implies\frac{2}{3}(50-N)=w\\\implies Nd=50-\frac{3}{2}w Y = A ( 0.025 K − 0.5 N ) N Y = 3 2 ( 50 − 0.5 N ) N δ N δ Y = 3 2 × 50 − 3 2 × 2 1 × 2 N ⟹ 3 2 ( 50 − N ) = w ⟹ N d = 50 − 2 3 w
N s = N d ⟹ − 18 + 18 w = 50 − 3 2 w ⟹ ( 18 5 + 3 2 ) w = 68 ⟹ ( 4.6 + 1.5 ) w = 68 ⟹ w = 68 5.1 = 13.33 ∴ N = 29.99 ≈ 30 N^s=N^d\\\implies-18+\frac{18}{w}=50-\frac{3}{2}w\\\implies(\frac{18}{5}+\frac{3}{2})w=68\\\implies(4.6+1.5)w=68\\\implies w=\frac{68}{5.1}=13.33\\\therefore N=29.99 \approx30 N s = N d ⟹ − 18 + w 18 = 50 − 2 3 w ⟹ ( 5 18 + 2 3 ) w = 68 ⟹ ( 4.6 + 1.5 ) w = 68 ⟹ w = 5.1 68 = 13.33 ∴ N = 29.99 ≈ 30
r = ∣ 1 2 450 1 2 6300 P + 20 ∣ − 300 r=\frac{\begin{vmatrix}
\frac{1}{2} & 450\\
\frac{1}{2}& \frac{6300}{P}+20
\end{vmatrix}}{-300} r = − 300 ∣ ∣ 2 1 2 1 450 P 6300 + 20 ∣ ∣
r = 3150 P + 10 − 225 − 300 r=\frac{\frac{3150}{P}+10-225}{-300} r = − 300 P 3150 + 10 − 225
r = 3150 P − 215 − 300 r=\frac{\frac{3150}{P}-215}{-300} r = − 300 P 3150 − 215
r = − 10.5 P + 0.716 r=-\frac{10.5}{P}+0.716 r = − P 10.5 + 0.716
Y = 2 3 ( 50 − 0.5 × 30 ) 30 Y=\frac{2}{3}(50-0.5\times30)30 Y = 3 2 ( 50 − 0.5 × 30 ) 30
Y = 2 3 ( 50 − 15 ) × 30 = 20 × 35 = 700 700 = 326.67 + 800 P ⟹ P = 22.5 r = 0.25 Y=\frac{2}{3}(50-15)\times30\\=20\times35=700\\700=326.67+\frac{800}{P}\\\implies P=22.5\\r=0.25 Y = 3 2 ( 50 − 15 ) × 30 = 20 × 35 = 700 700 = 326.67 + P 800 ⟹ P = 22.5 r = 0.25
e)
d N = 420 dN=420 d N = 420
22.5 = 0.5 Y − 200 ( r + 0.1 ) ⟹ 0.5 Y − 200 r − 20 = 298.67 ⟹ 1 2 Y + 400 r = 450 ( 15 ) 22.5=0.5Y-200(r+0.1)\\\implies0.5Y-200r-20=298.67\\\implies \frac{1}{2}Y+400r=450(15)\\ 22.5 = 0.5 Y − 200 ( r + 0.1 ) ⟹ 0.5 Y − 200 r − 20 = 298.67 ⟹ 2 1 Y + 400 r = 450 ( 15 )
Y = ∣ 450 400 318.67 − 200 ∣ − 300 Y=\frac{\begin{vmatrix}
450 & 400 \\
318.67 & -200
\end{vmatrix}}{-300} Y = − 300 ∣ ∣ 450 318.67 400 − 200 ∣ ∣
Y = 724.89 Y=724.89 Y = 724.89
r = ∣ 1 2 50 1 2 318.67 ∣ − 300 r=\frac{\begin{vmatrix}
\frac{1}{2} & 50 \\
\frac{1}{2} & 318.67
\end{vmatrix}}{-300} r = − 300 ∣ ∣ 2 1 2 1 50 318.67 ∣ ∣
r = 144.94 − 225 − 300 r=\frac{144.94-225}{-300} r = − 300 144.94 − 225
f.
LM curve shifts rightward due to increase in money supply.
Comments