Q.1 Consider the following information about a hypothetical economy:
1. Y = A (0.025K − 0.5N) N
2. A=2/3
3. K=2000
4. N^s=-18+(18/5)w
5. C=200+(2/3)(Y-T)-300r
6. T=-75+(1/4)Y
7. I =100−100r
8. G=100
9. L = 0.5Y − 200i
10. M=6300
11. π^e=0.10
Now using this information, answer the following:
(c) Derive the equations of the IS, LM and AD curves. Determine the numerical values of the slopes and
intercepts of these curves and interpret each?
(d) Determine the equilibrium levels of all endogenous variables under the assumptions of the classical
macroeconomic framework.
(e) Beginning from the initial classical equilibrium, suppose that the central bank increases the money supply
by 420 while price remains fixed at its initial long run equilibrium level. What will be the impact of this
policy on all endogenous variables in short run and long run?
(f) Compare the equilibrium positions in (d) and (e) in one graph indicating all points.
c)
IS equation,
"Y=C+I+G\\\\Y=200+\\frac{2}{3}(y-T)-300r+100-100r+100\\\\Y=400+\\frac{2}{3}(Y+75-\\frac{1}{4}Y)-400r\\\\Y=400+\\frac{2}{3}(\\frac{3}{4}Y+75)-400r\\\\Y=400+\\frac{1}{2}Y+50-400r\\\\\\frac{1}{2}Y+400r=450\\\\\\frac{1}{2}dY+400dr=0\\\\400dr=-\\frac{1}{2}dY\\\\\\frac{dr}{dY}=-\\frac{1}{800}"
LM equation,
"\\frac{M}{P}=L \\space \\space \\space [r=i-\\pi e]"
"\\implies \\frac{6300}{P}=0.5Y-200(r+\\pi e)\\\\\\implies\\frac{6300}{P}=0.5Y-200r-20\\\\0.5Y-200r=\\frac{6300}{P}+20\\\\0.5dY-200dr=0\\\\-200dr=-0.5dY\\\\\\frac{dr}{dY}=\\frac{0.5}{200}=\\frac{1}{400}\\\\\\frac{1}{2}Y+400r=450\\\\\\frac{1}{2}Y-200r=\\frac{6300}{P}+20"
"Y=\\frac{\\begin{vmatrix}\n 450 & 400 \\\\\n \\frac{6300}{P} & -200\n\\end{vmatrix}}{\\begin{vmatrix}\n \\frac{1}{2} & 400 \\\\\n \\frac{1}{2} & -200\n\\end{vmatrix}}"
"Y=\\frac{-90000-\\frac{2520000}{P}-8000}{-100-200}"
"Y=\\frac{98000+\\frac{2520000}{P}}{300}"
"Y=326.67+\\frac{8400}{P}\\\\\\frac{dY}{dP}=-{\\frac{8400}{P^2}}"
d)
"Y=A(0.025K-0.5N)N\\\\Y=\\frac{2}{3}(50-0.5N)N\\\\\\frac{\\delta Y}{\\delta N}=\\frac{2}{3}\\times50-\\frac{2}{3}\\times\\frac{1}{2}\\times 2N\\\\\\implies\\frac{2}{3}(50-N)=w\\\\\\implies Nd=50-\\frac{3}{2}w"
"N^s=N^d\\\\\\implies-18+\\frac{18}{w}=50-\\frac{3}{2}w\\\\\\implies(\\frac{18}{5}+\\frac{3}{2})w=68\\\\\\implies(4.6+1.5)w=68\\\\\\implies w=\\frac{68}{5.1}=13.33\\\\\\therefore N=29.99 \\approx30"
"r=\\frac{\\begin{vmatrix}\n \\frac{1}{2} & 450\\\\\n \\frac{1}{2}& \\frac{6300}{P}+20\n\\end{vmatrix}}{-300}"
"r=\\frac{\\frac{3150}{P}+10-225}{-300}"
"r=\\frac{\\frac{3150}{P}-215}{-300}"
"r=-\\frac{10.5}{P}+0.716"
"Y=\\frac{2}{3}(50-0.5\\times30)30"
"Y=\\frac{2}{3}(50-15)\\times30\\\\=20\\times35=700\\\\700=326.67+\\frac{800}{P}\\\\\\implies P=22.5\\\\r=0.25"
e)
"dN=420"
"22.5=0.5Y-200(r+0.1)\\\\\\implies0.5Y-200r-20=298.67\\\\\\implies \\frac{1}{2}Y+400r=450(15)\\\\"
"Y=\\frac{\\begin{vmatrix}\n 450 & 400 \\\\\n318.67 & -200\n\\end{vmatrix}}{-300}"
"Y=724.89"
"r=\\frac{\\begin{vmatrix}\n \\frac{1}{2} & 50 \\\\\n \\frac{1}{2} & 318.67\n\\end{vmatrix}}{-300}"
"r=\\frac{144.94-225}{-300}"
f.
LM curve shifts rightward due to increase in money supply.
Comments
Leave a comment