Suppose the money demand in an economy in which no interest is paid on money is M^d/p = 500+0.2Y-100i,
a) you're told that price =100, Y=100, and i=0.10.
Find the real money demand, nominal money demand and velocity.
b) the price doubles from p=10 to p=20. Find the real money demand, nominal money demand, and velocity.
Solution:
Md = P * L (R, Y)
Where: P = Price level = 100
L = Liquidity function
R = Interest rate = 0.10
Y = Real output = 100
Md = 500 + 0.2Y – 100i
a.). Real money demand:
Substitute the values in the demand function:
Md = 500 + 0.2(100) – 100(0.1)
Md = 500 + 20 – 10
Md = 510
Nominal money demand = Real money demand "\\times" Price
Nominal money demand = 510 "\\times" 100 = 51,000
Money velocity (MV) = Price (P) "\\times" Real output (Y)
Money velocity (MV) = 100 "\\times" 100 = 10,000
b.). An increase in P = 10 to P = 20:
Real money demand:
Substitute the values in the demand function:
Md = 500 + 0.2(100) – 100(0.1)
Md = 500 + 20 – 10
Md = 510
Nominal money demand = Real money demand "\\times" Price
Nominal money demand = 510 "\\times" 20 = 10,200
Money velocity (MV) = Price (P) "\\times" Real output (Y)
Money velocity (MV) = 20 "\\times" 100 = 20,000
Comments
Leave a comment