The demand and total cost functions of a good are respectively and
Find expressions for TR, (profit) , MR, and MC in terms of Q.
Solve the equation
and hence determine the value of Q which maximizes profit.
Verify that, at the point of maximum profit, MR=MC.
complete question
The demand and total cost functions of a good are
4P+Q-16=0
TC=4+2Q-3Q2/10+Q3/20
1:Find expressions for TR, (profit) , MR, and MC in terms of Q.
2:Solve the equation   dr/dQ=0 and hence determine the value of Q which maximizes profit.
3:Verify that, at the point of maximum profit, MR=MC.
solution
(1)"TR=P\\times Q"
"=[4-\\frac{Q}{4}]\\times Q"
"=4Q-\\frac{Q^{2}}{4}"
"MR=\\frac{\\delta TR}{\\delta Q}"
"MR=\\frac{\\delta 4Q-\\frac{Q^{2}}{4}}{\\delta Q}"
"MR=4-\\frac{Q}{2}"
"(profit)\\pi=TR-TC"
"=[4Q-\\frac{Q^{2}}{4}]-[4+2Q-\\frac{3Q^{2}}{10}+\\frac{Q^{3}}{20}]"
"=2Q-\\frac{Q^{2}}{4}+\\frac{3Q^{2}}{10}-\\frac{Q^{3}}{20}-4"
"=2Q-\\frac{Q^{2}}{4}+\\frac{5Q^{2}+6Q^{2}}{20}-\\frac{Q^{3}}{20}-4"
"\\pi=2Q+\\frac{Q^{2}}{20}-\\frac{Q^{3}}{20}-4"
"MC=\\frac{\\partial TC}{\\partial Q}"
"=\\partial\\div \\partial Q[4+2Q-\\frac{3Q^{2}}{10}+\\frac{Q^{3}}{20}]"
"MC=2-\\frac{6Q}{10}+\\frac{3Q^{2}}{20}"
(2) "\\frac{\\partial \\pi}{\\partial Q}=\\pi^{"}=0"
"=\\partial\\div \\partial Q[2Q+\\frac{Q^{2}}{20}-\\frac{Q^{3}}{20}-4]=0"
"2+\\frac{2Q}{20}-\\frac{3Q^{2}}{20}=0"
"40+2Q-3Q^{2}=0"
"3Q^{2}-2Q-40=0"
"3Q^{2}-12Q+10Q-40=0"
"3Q(Q-4)+10(Q-4)=0"
"(3Q+10)(Q-4)=0"
"Q=\\frac {-10}{3}"
"Q=4"
Since Q could never be negative therefore,-10/3 is rejected.
Hence=4 maximizes profit.
(3)
"MR=4-\\frac{Q}{2}"
at Q=4 "MR=4-\\frac{1}{2}(4)=2"
"MC=2-\\frac{6Q}{10}+\\frac{3Q^{2}}{20}"
at Q=4 "MC=2-\\frac{6\\times4}{10}+\\frac{3\\times 4^{2}}{20}=2"
at Q=4
"MR=MC=2"
Comments
Leave a comment