Question #195638

The demand and total cost functions of a good are respectively and



Find expressions for TR, (profit) , MR, and MC in terms of Q.

Solve the equation


and hence determine the value of Q which maximizes profit.

Verify that, at the point of maximum profit, MR=MC.


1
Expert's answer
2021-05-25T16:55:59-0400

complete question

The demand and total cost functions of a good are

4P+Q-16=0

TC=4+2Q-3Q2/10+Q3/20

1:Find expressions for TR, (profit) , MR, and MC in terms of Q.

2:Solve the equation   dr/dQ=0 and hence determine the value of Q which maximizes profit.

3:Verify that, at the point of maximum profit, MR=MC.


solution

(1)TR=P×QTR=P\times Q

=[4Q4]×Q=[4-\frac{Q}{4}]\times Q

=4QQ24=4Q-\frac{Q^{2}}{4}


MR=δTRδQMR=\frac{\delta TR}{\delta Q}

MR=δ4QQ24δQMR=\frac{\delta 4Q-\frac{Q^{2}}{4}}{\delta Q}

MR=4Q2MR=4-\frac{Q}{2}


(profit)π=TRTC(profit)\pi=TR-TC

=[4QQ24][4+2Q3Q210+Q320]=[4Q-\frac{Q^{2}}{4}]-[4+2Q-\frac{3Q^{2}}{10}+\frac{Q^{3}}{20}]

=2QQ24+3Q210Q3204=2Q-\frac{Q^{2}}{4}+\frac{3Q^{2}}{10}-\frac{Q^{3}}{20}-4

=2QQ24+5Q2+6Q220Q3204=2Q-\frac{Q^{2}}{4}+\frac{5Q^{2}+6Q^{2}}{20}-\frac{Q^{3}}{20}-4

π=2Q+Q220Q3204\pi=2Q+\frac{Q^{2}}{20}-\frac{Q^{3}}{20}-4


MC=TCQMC=\frac{\partial TC}{\partial Q}

=÷Q[4+2Q3Q210+Q320]=\partial\div \partial Q[4+2Q-\frac{3Q^{2}}{10}+\frac{Q^{3}}{20}]

MC=26Q10+3Q220MC=2-\frac{6Q}{10}+\frac{3Q^{2}}{20}


(2) πQ=π"=0\frac{\partial \pi}{\partial Q}=\pi^{"}=0

=÷Q[2Q+Q220Q3204]=0=\partial\div \partial Q[2Q+\frac{Q^{2}}{20}-\frac{Q^{3}}{20}-4]=0

2+2Q203Q220=02+\frac{2Q}{20}-\frac{3Q^{2}}{20}=0

40+2Q3Q2=040+2Q-3Q^{2}=0

3Q22Q40=03Q^{2}-2Q-40=0

3Q212Q+10Q40=03Q^{2}-12Q+10Q-40=0

3Q(Q4)+10(Q4)=03Q(Q-4)+10(Q-4)=0

(3Q+10)(Q4)=0(3Q+10)(Q-4)=0

Q=103Q=\frac {-10}{3}

Q=4Q=4

Since Q could never be negative therefore,-10/3 is rejected.

Hence=4 maximizes profit.


(3)

MR=4Q2MR=4-\frac{Q}{2}

at Q=4 MR=412(4)=2MR=4-\frac{1}{2}(4)=2

MC=26Q10+3Q220MC=2-\frac{6Q}{10}+\frac{3Q^{2}}{20}

at Q=4 MC=26×410+3×4220=2MC=2-\frac{6\times4}{10}+\frac{3\times 4^{2}}{20}=2

at Q=4

MR=MC=2MR=MC=2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS