complete question
The demand and total cost functions of a good are
4P+Q-16=0
TC=4+2Q-3Q2/10+Q3/20
1:Find expressions for TR, (profit) , MR, and MC in terms of Q.
2:Solve the equation dr/dQ=0 and hence determine the value of Q which maximizes profit.
3:Verify that, at the point of maximum profit, MR=MC.
solution
(1)TR=P×Q
=[4−4Q]×Q
=4Q−4Q2
MR=δQδTR
MR=δQδ4Q−4Q2
MR=4−2Q
(profit)π=TR−TC
=[4Q−4Q2]−[4+2Q−103Q2+20Q3]
=2Q−4Q2+103Q2−20Q3−4
=2Q−4Q2+205Q2+6Q2−20Q3−4
π=2Q+20Q2−20Q3−4
MC=∂Q∂TC
=∂÷∂Q[4+2Q−103Q2+20Q3]
MC=2−106Q+203Q2
(2) ∂Q∂π=π"=0
=∂÷∂Q[2Q+20Q2−20Q3−4]=0
2+202Q−203Q2=0
40+2Q−3Q2=0
3Q2−2Q−40=0
3Q2−12Q+10Q−40=0
3Q(Q−4)+10(Q−4)=0
(3Q+10)(Q−4)=0
Q=3−10
Q=4
Since Q could never be negative therefore,-10/3 is rejected.
Hence=4 maximizes profit.
(3)
MR=4−2Q
at Q=4 MR=4−21(4)=2
MC=2−106Q+203Q2
at Q=4 MC=2−106×4+203×42=2
at Q=4
MR=MC=2
Comments