Determine
d2y
dx2
, if 2x3 − 3y2 + 7xy = 0
"2x3 \u2212 3y2 + 7xy = 0"
"\\implies2\\times 3x^2-3\\times 2y\\frac{dy}{dx}+7(\\frac{dy}{dx}\n+y)=0"
"6x^2-6y\\frac{dy}{dx}+7x\\frac{dy}{dx}+7y=0\\implies\\frac{dy}{dx}=\\frac{6y-7x}{6x^2+7y}"
"12x-6(yy\\prime \\prime+y\\prime^2)+7(xy\\prime\\prime+y\\prime)+7y\\prime=0"
"\\implies12x-6yy\\prime \\prime-6y\\prime^2+7xy\\prime\\prime+7y\\prime+7y\\prime=0"
"\\implies y\\prime \\prime(7x-6y)=6y\\prime^2-12x-14y\\prime"
"\\implies y\\prime \\prime=\\frac{6y\\prime ^2-12x-14y\\prime}{7x-6y}"
"\\implies y\\prime \\prime =\\frac{6(\\frac{6y-7x}{6x^2+7y})-12x-14(\\frac{6y-7x}{6x^2+7y})}{7x-6y}"
Comments
Leave a comment