Question #191135

A monopolist’s demand function is given as Q,=2000-10P where Q is the quantity is produced and sold and P is the price per unit in Ksh. If the firm’s marginal cost is K.sh100:

  1. Calculate the monopolist’s equilibrium quantity and price.   
1
Expert's answer
2021-05-09T14:49:19-0400

Monopolist demand function is

Q=2000 -10P

Inverse demand function is

10P=2000QP=200Q1010P= 2000 -Q \\ P= 200 - \frac{Q}{10}

Total revenue= Price ×\times Quantity

=(200Q10)Q=200QQ210= (200 - \frac{Q}{10})Q \\ = 200Q -\frac{Q^2}{10}

Marginalrevenue=TRQMR=2002×Q10=200Q5Marginal revenue = \frac{\partial TR}{\partial Q} \\ MR= 200 - 2 \times \frac{Q}{10} \\ = 200 - \frac{Q}{5}

MC= 100 given

Monopolist equilibrium condition

MR=MC200Q5=100Q5=200100Q5=100Q=100×5Q=500MR= MC \\ 200 - \frac{Q}{5}=100 \\ \frac{Q}{5} = 200 -100 \\ \frac{Q}{5}= 100 \\ Q = 100 \times 5 \\ Q = 500

Price equation

P=200Q10P= 200 - \frac{Q}{10}

Substituting Q into price equation

P=20050010P=20050P=150P= 200 - \frac{500}{10} \\ P= 200 -50 \\ P= 150

Equilibrium price will be 150 and quantity will be 500 units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS