Question #190243

1.     Drive the AD (Aggregate Demand) curve using the following: IS curve is given as Y = 20XX-100i, LM1 is Y= 1000+25i (when P = 1) and LMis Y = 500+25i (when P =2), where XX is the last two digits of your student ID number. Show the derivation in (interest rate-income) and (price level-income) spaces. (You may insert a snapshot of the graphs if drawn manually).












1
Expert's answer
2021-05-09T14:21:55-0400

The student ID number being S1117895. Therefore the last two digits are 95.

Given IS CURVE is :

Y=20XX100isubstitute for XX above:therefore the IS curve is :Y=2095100iY=20XX-100i\\ substitute\ for \ XX \ above:\\ therefore\ the \ IS \ curve \ is \ :\\ Y=2095-100i


Given :LM1 is Y=1000+25i (P=1)LM_1 \ is \ Y=1000+25i\ (P=1)\\

and LM2 is Y=500+25i (P=2)LM_2 \ is \ Y=500+25i\ (P=2)


IS:Y=2095100iLM1:Y=1000+25iIS=LM2095100i=100+25i20951000=25i+100i1095=125ii=219125=8.76i=8.76IS : Y=2095-100i\\ LM_1:Y=1000+25i\\ IS=LM\\ 2095-100i=100+25i\\ 2095-1000=25i+100i\\ 1095=125i\\ i=\frac{219}{125}=8.76\\ i=8.76


IS:Y=2095100iLM2:Y=500+25iIS=LM2095100i=500+25i2095500=25i+100i1595=125ii=31925=12.76i=12.76IS:Y=2095-100i\\ LM_2:Y=500+25i\\ IS=LM\\ 2095-100i=500+25i\\ 2095-500=25i+100i\\ 1595=125i\\ i=\frac{319}{25}=12.76\\ i=12.76







Y1=2095(100×8.76)=1219Y2=2095(100×12.76)=819Y^*_1=2095-(100\times 8.76)=1219\\ Y^*_2=2095-(100\times12.76)=819


Derivation =1219819=$4001219-819=\$400


price level income :Y1=1000+(25×1)=1025Y_1=1000+(25\times1)=1025\\

Y2=500+(25×2)=550Y_2=500+(25\times2)=550


Derivation=1025550=$4751025-550=\$475








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS