Find the optimum level of output and profit from the cost function
TC = 50 + 6Q2
 and price
P = 100 – 4Q
Also derive marginal cost and marginal revenue.Â
"P=100-4Q\n, total revenue =price \\times quantity"
"total\\space revenue(TR)=(100-4Q)Q=100Q-4Q^2"
"dTR\/dQ=100-8Q=MR"
"MC=dTC\/dQ=12Q"
Profit is maximized at the level of output where MR=MC
"MR=MC"
"100-8Q=12Q"
"20Q=100"
"Q=5 \\space (optimal \\space output)"
"TR=100Q-4Q^2=100(5)-4(5^2)=400"
"TC=50+6Q^2=50+6(5)^2=200"
"profit=TR-TC=400-200=200 \\space (profit\\space at\\space the \\space optimal\\space level\\space of\\space output)"
Comments
Leave a comment