Given the following two-commodity system where both commodities are perishable and income (Y), is exogenous
D1 = -2000 + 7Y -200P1+300P2
S1 = -200 + 500P1 - 100P2
D2 = -1000 +4Y + 200P1 - 100P2
S2 = -800 - 100P1 + 300P2
And that for flow equilibrium, D1 = S1 and D2 = S2
a. Find the reduced form of the system
b. Hence find the flow equilibrium values of the endogenous variables when the consumers’ income(Y)
is $9.00
c. Find the change in the flow equilibrium values that result from a unit change in Y.
(a)D1=S1
"-2000+7Y-200P_{1}+300P_{2}=-200+500P_{1}-100P_{2}"
"7Y=-200=2000=500P_{1}=200p_{1}-100p_{2}-300p_{2}"
"7y=1800+700p_{1}-400p_{2}"
"y=257\\frac{1}{7}+100p_{1}-57\\frac{1}{7}p_{2}"
D2=S2
"-100+4y+200p_{1}-100p_{2}=-800-100p_{1}+300p_{2}"
"4y=-800+1000-100p_{1}-200p_{1}+300p_{2}+100p_{2}"
"4y=200-300p_{1}+400p_{2}"
"y=50-75p_{1}+100p_{2}"
(b)
"(9=257.142+100p_{1}-57.142p_{2})75"
"(9=50-75p_{1}+100p_{2})100"
"675=19285.714+7500p_{1}-4285.714p_{2}"
"900=5000-7500p_{1}+714.286p_{2}"
"1575=24285.714+5714.286p_{2}"
"p_{2}=-3.97"
"9=50-75p_{1}+100(-3.97)"
"9=50-75p_{1}-397"
"75p_{1}=9+397-50"
"75p_{1}=356"
"p_{1}=-4.75"
(c)
"y=257\\frac{1}{7}+100(-4.75)-57\\frac{1}{7}(-3.97)=8.75"
"y=50-75(-4.75)+100(-3.97)=9.25"
"\\frac{8.75}{9.25}=0.946"
"=1"
Comments
Leave a comment