solution
Y=incomeMPs=0.1MPc=1−0.1=0.9consumption function :C=Ca+MPC×YC=5000+0.9Y
Y=IncomeSaving function:S=−Ca+MPs×YS=−5000+0.1Y
we know that Y=C+Swhere Y=incomeC=consumptionS=savingif we want S=0,then Y has to be equal to Clet us replace Ywith C in the consumption function devised in partone above.we found that:C=5000+0.9Ywe can replace Y with C ,and the equation will be:C=5000+0.9C0.1C=5000C=0.15000C=50,000Since Y was to be equal to C ,we can say thatY=I=50,000
We are given:I=6000and Y=C+Sor at the equilibrium level S=I,we can also write it as:Y=C+Ilets substitute them by entering in the values of I and the whole C function in place of C abovewe get:Y=5000+0.9Y+6000Y−0.9Y=5000+6000O.1Y=0.111,000=110,000Y=equilibrium income=110,000
We are given G=4000and:Y=C+I+Gor at equilibrium levelS=I+GY=5000+0.9Y+6000+4000Y=15000+0.9YY−0.9Y=150000.1Y=15000Y=0.115000=150,000.
Comments