Question #166837

GIVEN: Ca = 5,000       

mps = 0.1          

I = 6,000            

G = 4,000

          Ta = 1,000   

mpt = 0.2  

   TR = 1,500

 

REQUIRED: Answer the following questions. Show the solutions.

1.   Formulate the consumption function.


2.   Formulate the savings function.


3.   Derive the equilibrium income for an economy consisting of HHs only and prove that Y = C  &  S = 0 using any approach of your choice.


4.   Derive the equilibrium income for an economy consisting of HHs & BFs and prove that Y = C + I and S = I using any approach of your choice.


5.   Derive the equilibrium income for an economy consisting of HH, BF & G does not impose taxes and prove that Y = C + I + G & S = I + G using any approach of your choice.


6.   Derive the equilibrium income for an economy consisting of HH, BF & G imposes fixed taxes and prove that Y = C + I + G & S + T = I + G using any approach of your choice.


7.   Derive the equilibrium income for an economy consisting of HH, BF & G imposes fixed & behavioral taxes and prove that Y = C + I + G & S + T = I + G using any approach of your choice.


8. Derive the equilibrium income for an economy consisting of HH, BF & G imposes fixed & behavioral taxes but grants transfer payments and prove that Y = C + I + G & S + T = I + G + TR using any approach of your choice. 


1
Expert's answer
2021-03-01T07:23:35-0500
solutionsolution


Y=incomeMPs=0.1MPc=10.1=0.9consumption function :C=Ca+MPC×YC=5000+0.9YY=income\\ MPs=0.1\\ MPc=1-0.1=0.9\\ consumption\ function\ :\\ C=Ca+MPC\times Y\\ C=5000+0.9Y


Y=IncomeSaving function:S=Ca+MPs×YS=5000+0.1YY= Income\\ Saving \ function:\\ S=-Ca+MPs\times Y\\ S=-5000+0.1Y\\


we know that Y=C+Swhere Y=incomeC=consumptionS=savingif we want S=0,then Y has to be equal to Clet us replace Ywith C in the consumption function devised in partone above.we found that:C=5000+0.9Ywe can replace Y with C ,and the equation will be:C=5000+0.9C0.1C=5000C=50000.1C=50,000Since Y was to be equal to C ,we can say thatY=I=50,000we \ know\ that\ Y=C+S\\ where\ Y=income\\ C=consumption\\ S=saving\\ if \ we \ want \ S=0, then \ Y \ has \ to\ be \ equal\ to\ C\\ let \ us\ replace\ Y with \ C\ in \ the\ consumption\ function \ devised\ in\ part \\ one\ above.\\ we\ found\ that:C=5000+0.9Y\\ we\ can\ replace\ Y\ with\ C\ , and\ the\ equation\ will\ be:\\ C=5000+0.9C\\ 0.1C=5000\\ C=\frac{5000}{0.1}\\ C=50,000\\ Since\ Y\ was\ to\ be\ equal\ to\ C\ ,we\ can\ say\ that\\ Y=I=50,000\\

We are given:I=6000and Y=C+Sor at the equilibrium level S=I,we can also write it as:Y=C+Ilets substitute them by entering in the values of I and the whole C function in place of C abovewe get:Y=5000+0.9Y+6000Y0.9Y=5000+6000O.1Y=11,0000.1=110,000Y=equilibrium income=110,000We\ are\ given:I=6000\\ and \ Y=C+S\\ or \ at\ the\ equilibrium\ level\ S=I,we\ can\ also\ write\ it\ as:\\ Y=C+I\\ lets\ substitute \ them\ by\ entering \ in \ the\ values\ of\ I\ and\ the \ whole\ C\ \\ function\ in\ place\ of\ C\ above\\ we\ get :\\ Y=5000+0.9Y+6000\\ Y-0.9Y=5000+6000\\ O.1Y=\frac{11,000}{0.1}=110,000\\ Y=equilibrium\ income=110,000


We are given G=4000and:Y=C+I+Gor at equilibrium levelS=I+GY=5000+0.9Y+6000+4000Y=15000+0.9YY0.9Y=150000.1Y=15000Y=150000.1=150,000.We \ are\ given\ G=4000\\ and : Y=C+I+G\\ or\ at\ equilibrium \ level\\ S=I+G\\ Y=5000+0.9Y+6000+4000\\ Y=15000+0.9Y\\ Y-0.9Y=15000\\ 0.1Y=15000\\ Y=\frac{15000}{0.1}=150,000.\\





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS