Q: Suppose there are three types of Apples A, B, and C being sold and consumed. The demand and supply equations for each type are:
DA= 20 - 2PA + 4PB + PC , SA= 4PA - 5
DB=10+3PA - 5PB + 2PC , SB=3PB - 7
DC = 70+4PA +2PB - 5PC , SC=5PC - 16
"D_A= 20 \u2013 2P_A + 4P_B + P_C \\\\\n\nS_A=4P_A-5 \\\\\n\nD_B=10+3P_A-5P_B+2P_C \\\\\n\nS_B=3P_B-7 \\\\\n\nD_C=70+4P_A+2P_B-5P_C \\\\\n\nS_C=5P_C-16"
At equilibrium,
"D_A=S_A \\\\\n\n=>20-2P_A+4P_B+P_C=4P_A-5 \\\\\n\n=>4P_A+2P_A-4P_B- P_C=20+5"
"=>6P_A-4P_B- P_C=25" ....(1)
"D_B=S_B \\\\\n\n=> 10+ 3P_A - 5P_B + 2P_C = 3P_B \u2013 7 \\\\\n\n=>-3P_A+3P_B+5P_B-2P_C=10+7 \\\\"
"=>-3P_A+8P_B-2P_C=17" ....(2)
"D_C = S_C"
"=>70+4P_A+2P_B-5P_C=5P_C-16 \\\\\n\n=>-4P_A-2P_B+5P_C+5P_C=70+16"
"=>-4P_A-2P_B+10P_C=86" ....(3)
From the system of equations, we get the determinant as,
"|D|=\\begin{vmatrix} 6 &-4 &-1 \\\\ -3& 8 &-2 \\\\ -4 &-2 & 10 \\end{vmatrix}=6(80-4)+4(-30-8)-1(6+32)=456-152-38=266"
By Cramer's rule,
"P_A^*=\\frac{\\begin{vmatrix} 25 &-4 &-1 \\\\ 17& 8 &-2 \\\\ 86 &-2 & 10 \\end{vmatrix}}{|D|}=\\frac{25(80-4)+4(170+172)-1(-34-688)}{266} \\\\\n\nP_A^*=\\frac{25 \\times 76+4 \\times 342-1(-722)}{266}=\\frac{1900+1368+722}{266}=\\frac{3990}{266} \\\\\n\nP_A^*=15 \\\\\n\nQ_A^*=4 \\times 15-5=60-5=55 \\\\\n\nP_B^*=\\frac{\\begin{vmatrix} 6 &25 &-1 \\\\ -3& 17 &-2 \\\\ -4 &86 & 10 \\end{vmatrix}}{|D|}=\\frac{6(170+172)-25(-30-8)-1(-258+68)}{266} \\\\\n\nP_B^*=\\frac{6 \\times 342+25 \\times 38-1(-190)}{266}=\\frac{2052+950+190}{266}=\\frac{3192}{266} \\\\\n\nP_B^*=12 \\\\\n\nQ_B^*=3 \\times 12-7=36-7=29 \\\\\n\nP_C^*=\\frac{\\begin{vmatrix} 6 &-4 &25 \\\\ -3& 8 &17 \\\\ -4 &-2 & 86 \\end{vmatrix}}{|D|}=\\frac{6(688+34)+4(-258+68)+25(6+32)}{266} \\\\\n\nP_C^*=\\frac{6 \\times 722-4 \\times 190+25 \\times 38}{266}=\\frac{4332-760+950}{266}=\\frac{4522}{266} \\\\\n\nP_C^*=17 \\\\\n\nQ_C^*=5 \\times 17-16=85-16=69 \\\\\n\nD_B=10+3P_A-5P_B+2P_C \\\\\n\n\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_A}=3 \\\\\n\n\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_B}=-5 \\\\\n\n\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_C}=2"
At equilibrium,
"D_B=29 , \\small P_A^*=15 , \\small P_B^*=12 , \\small P_C^*=17"
Elasticity of demand with respect to PA,
"\\varepsilon _A=\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_A}\\frac{P_A}{D_B}=3 \\times\\frac{15}{29}=1.55"
"\\varepsilon _A>0" implies A and B are substitute goods.
Elasticity of demand with respect to PB,
"\\varepsilon _B=\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_B}\\frac{P_B}{D_B}=-5 \\times \\frac{12}{29}=-2.0"
"|\\varepsilon _B|>1" implies the demand for good B is elastic.
Elasticity of demand with respect to PC,
"\\varepsilon _C=\\frac{\\mathrm{d} D_B}{\\mathrm{d} P_C}\\frac{P_C}{D_B}=2 \\times\\frac{17}{29}=1.17"
"\\varepsilon _C>0" implies B and C are substitute goods.
Comments
Leave a comment