Solution demand equation is:QxD=s−kPx−jMsupply equation is:Qxs=−h+bPx+cW
Here, M represents income and W represents the wage rate.
At equilibrium, Qxd=QxS
s−kPx−jM=−h+bPx+cW
bPx+kPx=(s−jM)+(h−cW)
Px(b+k)=(s−jM)+(h−cW)
Px∗=b+ks−jM+h−cW
Q∗=(b+k)−jMs−k(s−jM+h−cW)
Q∗=(b+k)−jMs−(ks−kjM+kh−kcW)
Here,Px∗and Q∗are the equilibrium price and quantity.
If income (M) changes by dM,
dPx∗=b+k−jdM(since, other parameters are constant)
dMdPx∗=b+k−j<0
dQ∗=[b+k]−jdMkjdM
dQ∗=dM[[b+k]−j(kj)]
dMdQ∗=(b+k)kj−j
dMdQ∗=j[(b+k)−1(k]
dMdQ∗=(b+k)−bj<0
Hence, After change in income (M)the equilibrium price and quantity decrease.
soln b
If value of k is decreased to k' then the:(b+k)−j<(b+k′)−j and (b+k)−bj<(b+k′)−bj.
soln c
Comments