Question #163303

Q. Given the demand and supply equations: Qxd=s-kPx-jM, Qxs=-h+bPx + cW where M represents income and W represents the wage rate:

·  Calculate the impact of a change in income on the equilibrium price and quantity.

·  Will this impact be larger or smaller if the value of k is decreased?

Draw diagram(s) indicating all results


1
Expert's answer
2021-02-23T12:44:48-0500
SolutionSolution

demand equation is:QxD=skPxjMsupply equation is:Qxs=h+bPx+cWdemand \ equation\ is : Q_x\\^D = s - kPx - jM\\ supply\ equation\ is : Q_x{\\^s} = -h + bPx + c W\\


Here, M represents income and W represents the wage rate.


At equilibrium, Qxd=QxSAt\ equilibrium, \ Qx^d = Qx^S


skPxjM=h+bPx+cWs - kPx - jM = -h + bPx + c W


bPx+kPx=(sjM)+(hcW)bPx + kPx = (s - jM) + (h - c W)


Px(b+k)=(sjM)+(hcW)Px(b + k) =( s - jM )+ (h - c W)

Px=sjM+hcWb+kP x^* =\frac {s - jM + h - cW}{b +k}


Q=sk(sjM+hcW)(b+k)jMQ^* =\frac{s-k(s-jM+h-cW)}{(b+k)-jM}


Q=s(kskjM+khkcW)(b+k)jMQ* =\frac {s-(ks-kjM+kh-kcW)}{(b+k)-jM}


Here,Pxand Qare the equilibrium price and quantity.Here, Px^* and\ Q^* are\ the\ equilibrium \ price\ and\ quantity.


If income (M) changes by dM,If \ income\ (M) \ changes\ by\ dM,


dPx=jdMb+k(since, other parameters are constant)dPx^* =\frac {-jdM}{b + k} (since, \ other\ parameters\ are \ constant)


dPxdM=jb+k<0\frac{dPx^*}{dM} =\frac{ -j}{b + k}< 0


dQ=kjdM[b+k]jdMdQ^* = \frac{kjdM}{[b + k] - jdM}


dQ=dM[(kj)[b+k]j]dQ^* = dM[\frac{(kj)}{[b + k] - j}]


dQdM=kj(b+k)j\frac{dQ^*}{dM} =\frac{ kj}{(b + k) }- j


dQdM=j[(k(b+k)1]\frac{dQ^*}{dM} = j[\frac{(k}{(b + k) - 1}]


dQdM=bj(b+k)<0\frac{dQ^*}{dM} = \frac{-bj}{(b + k)} < 0


Hence, After change in income (M)(M)the equilibrium price and quantity decrease.

soln b


If value of k is decreased to k' then the:j(b+k)<j(b+k) and bj(b+k)<bj(b+k).\frac{ -j}{(b + k)} < \frac{-j}{(b + k')} \ and\ \frac{-bj}{(b + k)} < \frac{-bj}{(b + k')}.


soln c






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS