C: Given the following characteristics: "C\\ d = 100 + 0.5(Y \u2212 T) \u2212 1000r\\ I\\ d = 400 \u2212 1500r\\ Md\\ P = 0.5Y \u2212 2000(r + \u03c0 e ) \u03c0 e = 0"
where
Y = output,
T = lump-sum tax,
G = government spending,
r = real rate of interest,
P is the price level.
AD curve; relationship between p and 4 and keep other variables as they are
"4= 100 + 0.5(Y \u2212 T) \u2212 1000r + 400 \u2212 1500r + 50-0.14 \u2212 50e+G = 0 \\\\\n4=550+0.5y-0.5T-2500r-0.1y-50e+G\\\\\n4-0.5y+0.1y=550-0.5T-2500r-50e+G\\\\\n0.6y=550-0.5T-2500r-50e+G\\\\\n\\therefore \\frac{4^{\\alpha}}{P}=0.5y-(2000)(r+r^e)\\\\\n\\therefore \\pi^e=0,\\\\\n\\frac{N}{P}=0.5T-2000r\\\\\n\\implies 2000r=0.5T-\\frac{M}{P}\\\\\n\\implies r=\\frac{0.5T}{2000}-\\frac{M}{P}\\times\\frac{1}{2000}\\\\\n\\therefore 0.6y=550-0.5T-2000(\\frac{0.5y-\\frac{M}{P}}{2000})-50e+G\\\\\n\\implies 0.6y=550-0.5T-1.25(6.5y-\\frac{M}{P})-50e+G\\\\\n\\implies 0.6y=550-0.5T-0.625y+1.25\\frac{M}{P})-50e+G\\\\\n\\implies 0.6y+0.625y-550-0.5T+\\frac{1.25M}{P}-50e+G\\\\\n\\frac{1.25M}{P}=1.205y-550+0.5T+50e+G\\\\"
Multiplying (4) both sides we get
"p=\\frac{5M}{4.94+2200+2T-4G+200e}"
For Q24, option d is correct
Comments
Leave a comment