Question #136901
1. Compute nominal GDP in each year using 2017 as the base year.

2017 2018 2019

price/unit Total quantity price /unit total quantity price total quantity

good A 30 900 35 1,000 34 1,050
good B 120 192 140 200 136 205
good C 95 450 85 750 102 550


Question No 2: compute the GDP deflator in each year and Use it compute the inflation rate from 2017 to 2018, and from 2018 to 2019.

Question No 3: On the basic of data provided, Use 2018 as base year and
compute (CPI) for each year. Compare the results of inflation rates computed in Qus No 2 and 3.
1
Expert's answer
2020-10-07T07:12:47-0400
  1. Nominal GDP

2017: (30900)+(120192)+(95450)=92790(30*900)+(120*192)+(95*450)= 92790


2018 :(351000)+(140200)+(85750)=126750(35*1000)+(140*200)+(85*750)=126750


2019: (341050)+(136205)+(102550)=119680(34*1050)+(136*205)+(102*550)=119680


2.GDP deflector and inflation rate

2017:9279092790100=100%\frac{92790}{92790}*100=100\%


2018: 12675092790100=136.599%\frac{126750}{92790}*100=136.599 \%


2019: 11968092790100=128.979%\frac{119680}{92790}*100=128.979 \%


inflation rate:

2018: [136.599100]100[136.599-100 ]\over 100 =0.36599

2019 :[128.979100]100[128.979-100]\over 100 =0.28979


3.computing CPI using 2018 as base year

CPI=base year quantitiescurrent year pricebase year basket quantitiesbase year pricebase ~year~quantities *current~year~ price\over base~year ~basket~ quantities *base~year~price *100

using 2018:

2017:9279012675092790 \over 126750 =0.73207


2019:119680126750119680 \over 126750 =0.94422


CPI is higher than inflation rate




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS