Question #129618
Suppose production function is
Q=k²L²-0.12k²-3.2L²
Then find the level of output where
APL=MPL,if k=15
MPK=0,if L=10
1
Expert's answer
2020-08-17T10:08:53-0400

1.

APL=QLAPL=\frac{Q}{L}


MPL=ΔQΔLMPL=\frac{\Delta Q}{\Delta L}


Q=k2L20.12k23.2L2=152L20.12×1523.2L2=225L2273.2L2=221.8L227Q=k^2L^2-0.12k^2-3.2L^2=15^2L^2-0.12\times15^2-3.2L^2=225L^2-27-3.2L^2=221.8L^2-27


put Q into the formula:


L=Q+0.12k2k23.2=Q+27221.8=L227221.8L=\sqrt{\frac{Q+0.12k^2}{k^2-3.2}}=\sqrt{\frac{Q+27}{221.8}}=\sqrt{L^2-\frac{27}{221.8}}


APL=MPL


Q=APL×LQ=APL\times L


put the found expressions in the formula and get Q


L cut on each other


Q=221.8L^2-27


ΔQ=APL×ΔL\Delta Q=APL\times\Delta L

ΔQ=QL×ΔL\Delta Q=\frac{Q}{L}\times\Delta L


ΔQ=221.8L227L227221.8×(12×L227221.8)=110.9\Delta Q=\frac{221.8L^2-27}{\sqrt{L^2-\frac{27}{221.8}}}\times(\frac{1}{2\times \sqrt{L^2-\frac{27}{221.8}}})=110.9

2.


MPK=ΔQΔkMPK=\frac{\Delta Q}{\Delta k}


MPK=0 L=10


ΔQ=MPK×Δk\Delta Q=MPK\times\Delta k


ΔQ=0\Delta Q=0


Find the derivatives Q


Q'=2k2L-0.24k-6.4L=0

2k2×100.24k6.4×10=02k2\times10-0.24k-6.4\times10=0

40k-0.24k-64=0

39.76k=64

k=6439.76k=\frac{64}{39.76}

Q=26439.762×100.246439.766.4×10=0Q'=2\frac{64}{39.76}2\times10-0.24\frac{64}{39.76}-6.4\times10=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Rahid ullah
19.08.20, 07:46

thanks for helping

LATEST TUTORIALS
APPROVED BY CLIENTS