Given the utility function:
U = X 3/4 . Y1/4
Estimate the demand functions of commodity X and commodity Y using Lagrange method, if it is given that price of X is Px and price of Y is Py and Income is M.
L=X∗3/4∗Y∗1/4+λ(M−PxX−PyY)L=X*3/4*Y*1/4+\lambda(M-PxX-PyY)L=X∗3/4∗Y∗1/4+λ(M−PxX−PyY)
δLδX=3/16∗Y−λPx=0\frac{\delta L}{\delta X}=3/16*Y-\lambda Px=0δXδL=3/16∗Y−λPx=0
δLδY=3/16∗X−λPy=0\frac{\delta L}{\delta Y}=3/16*X-\lambda Py=0δYδL=3/16∗X−λPy=0
δLδλ=M−PxX−PyY=0\frac{\delta L}{\delta \lambda}=M-PxX-PyY=0δλδL=M−PxX−PyY=0
3/16∗Yλ=Px\frac{3/16*Y}{\lambda}=Pxλ3/16∗Y=Px
3/16∗Xλ=Py\frac{3/16*X}{\lambda}=Pyλ3/16∗X=Py
M−3/16∗YλX−3/16∗XλY=0M-\frac{3/16*Y}{\lambda}X-\frac{3/16*X}{\lambda}Y=0M−λ3/16∗YX−λ3/16∗XY=0
M−3/8∗YXλ=0M-\frac{3/8*YX}{\lambda}=0M−λ3/8∗YX=0
λ∗M=3/8∗Y∗X\lambda*M=3/8*Y*Xλ∗M=3/8∗Y∗X
Commodities X and Y are substitutes does not matter their ratio you will get maximum utility
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments