Question #124085
the demand for ice cream is x=10+m/10p. the income of the consumer is $120 and the price of the ice cream is $3 . now suppose the price of the ice cream falls to $2 . find the income and substitution effect.
1
Expert's answer
2020-06-29T15:33:46-0400

X=10+m10pX=10+\frac{m}{10p}

His demand for ice cream will be;

10+1203010+\frac{120}{30}

=10+4=14dollars=10+4=14 dollars


If the ice cream decreases by 2 dollars then the new price will be;

10+1202010+\frac{120}{20}

=10+6=16=10+6=16 dollars

The total change in demand will be 1614=216-14=2 dollars

Δ\DeltaXX15=X=X1(P(P1,m)X,m)-X1(P(P1,m),m)

Δ\Deltam=Xm=X1 Δ\Delta PP1=14(23)==14(2-3)= -1414 dollars

Therefore consumers income will be reduced to 14 dollars in order to hold his purchasing power.

=m+Δ=m+\Delta m=12014=106m=120-14=106 dollars.

With an income of 6 he can still purchase 14 units of the ice cream at a lower price of 2 dollars\text{With an income of 6 he can still purchase 14 units of the ice cream at a lower price of 2 dollars}Consumers demand for the ice cream when he faces the price of 2 dollars and has an income of 106 dollars\text{Consumers demand for the ice cream when he faces the price of 2 dollars and has an income of 106 dollars} =10+10620=10+\frac{106}{20} =15.3=15.3 dollars.

The substitution effect will therefore be ;

Δ\DeltaXX51=X=X1(2,106)(2,106)- XX1(3,120)(3,120)

=15.314=1.3=15.3-14=1.3 dollars.This is the substitution effect.

The income effect is;

Δ\DeltaXXn1==XX1(P(P1,m),m)- XX1(P(P1,m),m)

Δ\DeltaXXn1=X=X1(2,120)(2,120)- XX1(2,106)(2,106)

=1615.3=0.7=16-15.3=0.7 dollars

Therefore the income effect is 0.70.7 dollarsdollars



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS