Question #123767
Given the following National Income Model

Y = C + I0 + G0 + X0 – Z
Where C = C0 + bYd
Yd = Y – T

T = T0 + Ty and Z = Z0 + ZYd
In this equation X and Z are export and import
• Identify endogenous and exogenous variables and parameters.
• Find out equilibrium level of Y and C
(full solution)
1
Expert's answer
2020-06-26T09:33:02-0400

1) Identify endogenous and exogenous variables and parameters


The exogenous variables are I0,  G0,  X0,  T0,  Z0I_0, \;G_0, \; X_0, \; T_0, \; Z_0


The endogenous variables are Y,  C,  T,  ZY, \; C, \; T, \; Z



2) Find out equilibrium level of Y and C


At equilibrium,

Y=C+I+G+(XZ)Y = C + I + G + (X - Z)

Therefore:



Y=C0+b(YT0tY)+I0+G0+X0z(YT0tY)Y(1b+tb+ztz)=C0bT0+I0+G0+X0+zT0Y=C0bT0+I0+G0+X0+zT01b+tb+ztzY = C_0 + b(Y - T_0 - tY) + I_0 + G_0 + X_0 - z(Y - T_0 - tY)\\[0.3cm] Y(1 - b + tb + z - tz) = C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0\\[0.3cm] \color{red}{Y^* = \dfrac{C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0}{1 - b + tb + z - tz}}

This gives an equilibrium consumption of:


C=C0+bYdC=C0+b(YT0tY)C=C0+b(1t)YbT0C=C0+b(1t)(C0bT0+I0+G0+X0+zT0)1b+tb+ztzbT0C=(C0bT0)(1b+tb+ztz)+b(1t)(C0bT0+I0+G0+X0+zT0)1b+tb+ztzC = C_0 + bY_d\\[0.3cm] C = C_0 + b(Y - T_0 - tY)\\[0.3cm] C^* = C_0 + b(1 - t)Y^* - bT_0\\[0.3cm] C^* = C_0 + \dfrac{b(1 - t)(C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0)}{1 - b + tb + z - tz} - bT_0\\[0.3cm] \color{red}{C^* = \dfrac{(C_0 - bT_0)(1 - b + tb + z - tz) + b(1 - t)(C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0)}{1 - b + tb + z - tz}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS