1) Identify endogenous and exogenous variables and parameters
The exogenous variables are "I_0, \\;G_0, \\; X_0, \\; T_0, \\; Z_0"
The endogenous variables are "Y, \\; C, \\; T, \\; Z"
2) Find out equilibrium level of Y and C
At equilibrium,
"Y = C + I + G + (X - Z)"Therefore:
This gives an equilibrium consumption of:
"C = C_0 + bY_d\\\\[0.3cm]\nC = C_0 + b(Y - T_0 - tY)\\\\[0.3cm]\nC^* = C_0 + b(1 - t)Y^* - bT_0\\\\[0.3cm]\n\nC^* = C_0 + \\dfrac{b(1 - t)(C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0)}{1 - b + tb + z - tz} - bT_0\\\\[0.3cm]\n\n\\color{red}{C^* = \\dfrac{(C_0 - bT_0)(1 - b + tb + z - tz) + b(1 - t)(C_0 - bT_0 + I_0 + G_0 + X_0 + zT_0)}{1 - b + tb + z - tz}}"
Comments
Leave a comment