1.1.1
Y=C+I=0.8+0.2=1
MPC=CY=0.81MPC=\frac{C}{Y}=\frac{0.8}{1}MPC=YC=10.8 =0.8
MPS=1-0.8=0.2
M=11−MPC=10.2M=\frac{1}{1-MPC}=\frac{1}{0.2}M=1−MPC1=0.21 }=5
1.1.2
let G=0.5
M=1(1−MPC)(1−t)×G=1(1−0.8)(1−0.15)×0.5M=\frac{1}{(1-MPC)(1-t)}\times G=\frac{1}{(1-0.8)(1-0.15)}\times0.5M=(1−MPC)(1−t)1×G=(1−0.8)(1−0.15)1×0.5 =2.94
1.1.3
let induced imports=-0.2, f
M=1(1−c)(1−t)+f=1(1−0.8)(1−0.15)−0.2M=\frac{1}{(1-c)(1-t)+f}=\frac{1}{(1-0.8)(1-0.15)-0.2}M=(1−c)(1−t)+f1=(1−0.8)(1−0.15)−0.21 =2.7
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments