dY∗di=(C0−C1T+A0i+G1−C1)′=([C0−C1T+A0i+G])′×(1−C1)−([C0−C1T+A0i+G])×(1−C1)′(1−C1)2=((−C1−A0i2+1)×(1−C1)−0)(1−2C1+C12)=(1−C1−A0i2)×(1−C1)(1−C1)(1+C1)=(1−C1−A0i2)(1+C1)\frac{dY*}{di}=(\frac{C0-C1T+\frac{A0}{i}+G}{1-C1})'=\frac{([C0-C1T+\frac{A0}{i}+G])'\times(1-C1)-([C0-C1T+\frac{A0}{i}+G])\times(1-C1)'}{(1-C1)^2}=\frac{((-C1-\frac{A0}{i^2}+1)\times(1-C1)-0)}{(1-2C1+C12)}=\frac{(1-C1-\frac{A0}{i^2})\times(1-C1)}{(1-C1)(1+C1)}=\frac{(1-C1-\frac{A0}{i^2})}{(1+C1)}didY∗=(1−C1C0−C1T+iA0+G)′=(1−C1)2([C0−C1T+iA0+G])′×(1−C1)−([C0−C1T+iA0+G])×(1−C1)′=(1−2C1+C12)((−C1−i2A0+1)×(1−C1)−0)=(1−C1)(1+C1)(1−C1−i2A0)×(1−C1)=(1+C1)(1−C1−i2A0)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments