You are considering an investment in a 40-year security. The security will pay $25 a year at
the end of each of the first three years. The security will then pay $30 a year at the end of
each of the next 20 years. The nominal interest rate is assumed to be 8 percent, and the
current price (present value) of the security is $360.39. Given this information, what is the
equal annual payment to be received from Year 24 through Year 40 (i.e., for 17 years)?
1
Expert's answer
2016-03-09T09:04:05-0500
CF 0= 0 (press 0 cfj) CF 1-3 = 25 (press 25, press CFj, then press 3, press shift, press CFj) CF 4-23 = 30 (press 30, CFj, 20, shift, CFj) press 8, I, then press shift PRC. Solve for NPV = $298.25. (this is the present value of the first 23 payments). Difference between the security's price and PV of payments: $360.39 - $298.25 = $62.14. Calculate the FV of the difference between the purchase price and PV of payments, Years 1-23: N = 23 I = 8 PV = -62.14 Solve for FV = $364.85. Calculate the value of the annuity payments in Years 24-40: N = 17 I = 8 PV = -364.85. Solve for PMT = $40.
Numbers and figures are an essential part of our world, necessary for almost everything we do every day. As important…
APPROVED BY CLIENTS
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments
Leave a comment