(b) We shall calculate the average return bybthe formula
Average return = a v e r a g e i n v e s t m e n t i n i t i a l i n v e s t m e n t =\frac{average \hspace{0.1cm}investment}{initial \hspace{0.1cm}investment} = ini t ia l in v es t m e n t a v er a g e in v es t m e n t
The average investment from January through to June is given by
= 95.5 6 =\frac{95.5}{6} = 6 95.5
= 15.92 =15.92 = 15.92
Now,
A v e r a g e r e t u r n = 15.92 15.25 Average \hspace{0.1cm}return=\frac{15.92}{15.25} A v er a g e re t u r n = 15.25 15.92
= 1.04 =1.04 = 1.04
(C) To calculate the standard deviation
S . D = ∑ ( x − x ˉ ) 2 n S.D=\sqrt{\frac{\sum(x-\bar{x})²}{n}} S . D = n ∑ ( x − x ˉ ) 2
Where x ˉ \bar{x} x ˉ Is the average value (the mean) in question (b) which is
x ˉ = 15.92 \bar{x}=15.92 x ˉ = 15.92
∑ ( x − x ˉ ) 2 = ( 15.25 − 15.92 ) 2 + ( 16.10 − 15.92 ) 2 + ( 16.20 − 15.92 ) 2 + ( 15.80 − 15.92 ) 2 + ( 15.85 − 15.92 ) 2 + ( 16.30 − 15.92 ) 2 \sum({x-\bar{x}})²=(15.25-15.92)² +(16.10-15.92)²+(16.20-15.92)²+(15.80-15.92)²+(15.85-15.92)²+(16.30-15.92)² ∑ ( x − x ˉ ) 2 = ( 15.25 − 15.92 ) 2 + ( 16.10 − 15.92 ) 2 + ( 16.20 − 15.92 ) 2 + ( 15.80 − 15.92 ) 2 + ( 15.85 − 15.92 ) 2 + ( 16.30 − 15.92 ) 2
∑ ( x − x ˉ ) = 0.4489 + 0.0324 + 0.0729 + 0.0144 + 0.0049 + 0.1444 \sum({x-\bar{x}})=0.4489+0.0324+0.0729+0.0144+0.0049+0.1444 ∑ ( x − x ˉ ) = 0.4489 + 0.0324 + 0.0729 + 0.0144 + 0.0049 + 0.1444
∑ ( x − x ˉ ) 2 = 0.7179 \sum({x-\bar{x}})²=0.7179 ∑ ( x − x ˉ ) 2 = 0.7179
Therefore,
S . D = ∑ ( x − x ˉ ) 2 n S.D=\sqrt{\frac{\sum(x-\bar{x})²}{n}} S . D = n ∑ ( x − x ˉ ) 2
S . D = 0.7179 6 S.D=\sqrt{\frac{0.7179}{6}} S . D = 6 0.7179
S . D = 0.11965 S . D = 0.3459 S.D=\sqrt{0.11965}\\S.D=0.3459 S . D = 0.11965 S . D = 0.3459
HENCE,
(a)the monthly holding -period return is
0.06%
(b)the average return is
1.04%
(c)the standard deviation is
0.3459
Comments