data over the past six months.
Number of houses sold Monthly loan payments (in R1 000’s)
x y
160 3,7
250 5,6
800 7,5
450 11,3
120 18,9
50 28.4
The regression line equation is [1] y = 480,89x − 13,99. [2] y = −0,016x + 17,45. [3] y = 17,45x − 0,016. [4] y = −13,99x + 480,89. [5] none of the above
Solution:
Given:
Step 1: Find "X\\cdot Y" and "X^2" as follows.
Step 2: Find the sum of every column:
"\\sum X=1830, \\sum Y=75.4, \\sum X \\cdot Y=16765, \\sum X^{2}=947500"
Step 3: Use the following equations to find a and b :
"\\begin{aligned}\n\n&a=\\frac{\\sum Y \\cdot \\sum X^{2}-\\sum X \\cdot \\sum X Y}{n \\cdot \\sum X^{2}-\\left(\\sum X\\right)^{2}}=\\frac{75.4 \\cdot 947500-1830 \\cdot 16765}{6 \\cdot 947500-1830^{2}} \\approx 17.45 \\\\\n\n&b=\\frac{n \\cdot \\sum X Y-\\sum X \\cdot \\sum Y}{n \\cdot \\sum X^{2}-\\left(\\sum X\\right)^{2}}=\\frac{6 \\cdot 16765-1830 \\cdot 75.4}{6 \\cdot 947500-(1830)^{2}} \\approx-0.01601\n\n\\end{aligned}"
Step 4: Substitute a and b in regression equation formula
"y=a+b \\cdot x\n\n\\\\y=17.45-0.01601 \\cdot x"
Thus, option [2] is correct.
Comments
Leave a comment