Question #142332
19. Given the total cost function
TC = 150 Q – 3Q2 + 0.25Q3
Complete the following table by computing the total, average, and marginal costs associated with each quantity indicated.

Quantity Total Cost Average Cost Marginal Cost
1
2
3
4
5
6
1
Expert's answer
2020-11-10T07:24:07-0500

We are given:


TC=150Q3Q2+0.25Q3TC = 150Q - 3Q^2+0.25Q^3


The average cost, AC=TCQAC = \dfrac {TC}{Q} and,


Marginal cost, MCMC is such that

MCn=TCnTCn1MC_{n} = TC_{n}-TC_{n-1}


Example\bold {Example}


When Q=1Q = 1,


TC=150(1)3(12)+0.25(13)TC = 150(1)-3(1^2)+0.25(1^3)

=$147.25\bold {= \$147.25}


AC=$147.251AC = \dfrac {\$147.25}{1} =$147.25\bold {=\$147.25}


MC=TC1TC0MC = TC_{1}-TC_{0}

=?\bold {=?} (TC0TC_{0} does not exist)



When Q=2,Q=2,


TC=150(2)3(22)+0.25(23)TC = 150(2)-3(2^2)+0.25(2^3)

=$290\bold {=\$290}


AC=$2902AC = \dfrac {\$290}{2} =$145\bold {=\$145}



MC=TC2TC1MC = TC_{2}-TC_{1}

=$290$147.25= \$290-\$147.25

=$142.75\bold {=\$142.75}



When Q=3Q=3


TC=150(3)3(32)+0.25(33)TC = 150(3)-3(3^2)+0.25(3^3)

=$429.75\bold {=\$429.75}


AC=$429.753AC = \dfrac {\$429.75}{3} =$143.25\bold {=\$143.25}


MC=TC3TC2MC = TC_{3}-TC_{2}

=$429.75$290= \$429.75-\$290

=$139.75\bold {=\$139.75}


The remaining Q=4, 5 and 6 are completed in a similar manner. The table below is the completed solution.


ANSWER\bold {ANSWER}


QTCACMC\\ \bold {Q \hspace{9mm} TC \hspace {11mm} AC \hspace {11mm} MC}


1147.25147.251 \hspace{8mm} 147.25 \hspace {8mm} 147.25 \hspace {10mm} -


2290.00145.00142.752 \hspace{8mm} 290.00 \hspace {8mm} 145.00\hspace {8mm} 142.75

3429.75143.25139.753 \hspace{8mm} 429.75 \hspace {8mm} 143.25 \hspace {8mm} 139.75

4568.00142.00138.254\hspace{8mm} 568.00 \hspace {8mm} 142.00 \hspace {8mm} 138.25

5706.25141.25138.255 \hspace{8mm} 706.25 \hspace {8mm} 141.25 \hspace {8mm} 138.25

6846.00141.00139.756 \hspace{8mm} 846.00 \hspace {8mm} 141.00 \hspace {8mm} 139.75

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS