What is the semi-annual coupon bond’s nominal yield to maturity (YTM), if the years to maturity is 15 years, and sells for 119% with coupons rate of 10%? Assume the par value of the bond is $1,000.
P=1.19×1000=1190P=1.19\times1000=1190P=1.19×1000=1190
1190=50(1+r)1+50(1+r)2+50(1+r)3+50(1+r)4+.....+1050(1+r)301190=\frac{50}{(1+r)^1}+\frac{50}{(1+r)^2}+\frac{50}{(1+r)^3}+\frac{50}{(1+r)^4}+.....+\frac{1050}{(1+r)^{30}}1190=(1+r)150+(1+r)250+(1+r)350+(1+r)450+.....+(1+r)301050
r=0.0391283
YTM=(1+0.0391283)2−1)×100=7.978YTM=(1+ 0.0391283)^2-1)\times100=7.978YTM=(1+0.0391283)2−1)×100=7.978
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments