The NPV of this project is:
"NPV = -(425,000 + 25,000) + \\frac{275*(1 - 0.35)*(1 - 0.22) + 80,000 - 47,000}{1 + 0.09} + \\frac{275*(1 - 0.35)*(1 - 0.22) + 80,000 - 47,000}{(1 + 0.09)^2} + \\frac{275*(1 - 0.35)*(1 - 0.22) + 80,000 - 47,000}{(1 + 0.09)^3} + \\frac{275*(1 - 0.35)*(1 - 0.22) + 80,000 - 47,000}{(1 + 0.09)^4} + \\frac{275*(1 - 0.35)*(1 - 0.22) + 80,000 - 47,000 + 25,000 + 25,000}{(1 + 0.09)^5} = -288,602.62."
Comments
Leave a comment